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Abstract: Automatically classifying an image has been a central problem in computer vision for decades. A plethora of models
has been proposed, from handcrafted feature solutions to more sophisticated approaches such as deep learning. The authors
address the problem of remote sensing image classification, which is an important problem to many real world applications.
They introduce a novel deep recurrent architecture that incorporates high-level feature descriptors to tackle this challenging
problem. Their solution is based on the general encoder–decoder framework. To the best of the authors’ knowledge, this is the
first study to use a recurrent network structure on this task. The experimental results show that the proposed framework
outperforms the previous works in the three datasets widely used in the literature. They have achieved a state-of-the-art
accuracy rate of 97.29% on the UC Merced dataset.

1 Introduction
Remote sensing (RS) techniques play a central role in a wide range
of real-world scenarios, e.g. governments are using RS for weather
reporting to traffic monitoring and companies are using them to
update their location-based services [1]. With the upcoming of
satellite sensors that allow for the acquisition of a large variety of
heterogeneous images of different spatial, spectral, angular and
temporal resolutions, the manual processing of such data is bound
to become a tedious task. The automation of the classification of
the RS input images has thus become a necessity [2], another
research direction is to consider classifying each pixel of the image
into semantic regions instead of the overall scene structure [3]. One
of the earliest successful approaches was to use a multi-stage hand-
engineered solution to classify RS images, such as the bag-of-
visual words (BOW) approach. These frameworks were heavily
based on the hand-crafted feature descriptors like HOG [4], SIFT
[5] etc. Such approaches include the spatial pyramid matching
kernel, spatial pyramid co-occurrence kernel, min-tree kd-tree, and
sparse coding methods [6].

Deep learning has recently become ubiquitous as it has proven
to be robust on various vision and natural language tasks. These
techniques were successfully applied to image recognition, speech
recognition, image captioning, question answering, and machine
translation, just to mention a few [7]. Inspired by these recent
advances, in this work we try to approach the problem of RS image
classification by proposing a novel deep learning framework
designed in an encoder–decoder fashion. We employ a deep
convolutional neural network (CNN) architecture to encode the
input RS images into a compact feature space, and then use a long-
short term memory recurrent neural network (LSTM-RNN)
architecture to decode these compact features to predict class label.

The rest of the manuscript is organised as follows. In Section 2,
we briefly review the previous works that focus on hand-crafted
feature extraction and then present the more recent work on deep
learning. In Section 3, we give a full description of our proposed
model. We provide detailed information on the experimental
process for implementing our solution in Section 4. Finally, Section
5 concludes our work on the RS image classification problem.

2 Related work

This section gives a summary of the most recent works on remote
sensing image classification. We skim through the very recent
methods on the subject, as a full review would be too cumbersome
for this study. We refer the reader to [2, 8] for unsupervised feature
extraction, and [1] for a review of recent advances in the subject.

The earlier approaches were heavily focused on the
combination of feature descriptors such as SIFT [5] and HOG [4].
One of the most-commonly used approaches, i.e. the bag-of-visual-
words (BOW) method, has been extensively studied for this task.
In [9], the SIFT-BOW approach has been successfully applied to
land-use classification in high-resolution overhead imagery.
Unsupervised feature learning with spectral clustering and BOW
has been proposed in [8], where the low-level local features of the
image are extracted automatically through dictionary learning and
feature encoding.

However, it is well known that the BOW representation ignores
the spatial relationships of visual words. To overcome this
limitation, several methods have been proposed in the literature.
One popular choice that addresses this issue is the spatial pyramid
match kernel [10]. In [11], the authors suggested using a pyramid
of spatial relations model to incorporate both relative and absolute
spatial information into the bag-of-words (BOW) representation.

Recently, deep learning architectures have been successfully
applied in image recognition tasks [12–14]. One way to benefit
from these models is to use the transfer learning technique, which
is to consider initialising the CNN with weights obtained from a
pre-trained model (usually from Imagenet [15]). For instance, this
technique was considered in [6], where a small CNN architecture
was used. We could also utilise a well-known architecture,
GoogLeNet [16] architecture is fine-tuned on UC Merced Land
Use dataset (UC Merced for short) and the Brazilian Coffee Scenes
dataset in [17]. In depth study on the use of well-known trained
deep architectures on target datasets along with the effectiveness of
deep learning methods compared with handcrafted features have
been presented in [18, 19]. Another way to approach the problem is
to consider the use of the rich high-level features delivered by deep
neural network models trained on a large-scale dataset. This idea
was first attempted in [20], where SVM was used as a classifier.

More recently, a general pipeline based on neural networks has
emerged as the state-of-the-art to various problems, namely
encoder–decoder framework. The aim of this framework is to
handle the mapping between highly-structured input and output

IET Comput. Vis.
© The Institution of Engineering and Technology 2018

1

This paper is a postprint of a paper submitted to and accepted for publication in IET Comput. Vis. and is subject to Institution of 
Engineering and Technology Copyright. The copy of record is available at IET Digital Library.



[21]. Concretely, in the first step, the encoder tries to summarise
the input data into a continuous representation called context cI.
The decoder then extracts the information conditioned on the
context. The strength of this technique lies in its ability to match
between different modalities for input and output. In [22, 23], the
authors successfully applied the idea of encoder–decoder to
machine translation. Perhaps a more complex variant of this
attempt is to consider an ensemble of dense representations as
context, which is known as an attention-based model. The intuition
behind this is to alleviate the problem of long sequence output that
a single feature cannot handle well [21]. In [24], attention model
has been proposed to the problem of image captioning.
Furthermore, in [25], the authors proposed to use a soft version of
attention mechanism for the task of action recognition in videos.

3 Proposed approach
In this section, we describe the approach used for our encoder–
decoder model. Our solution comprises of two main parts: (i) the
encoder, which is chosen as a deep CNN architecture, aims to
transform the input to a more compact feature space; and (ii) the
decoder, which is chosen as a LSTM-RNN architecture, tries to
disassemble the feature to predict a class label. Instead of having a
fixed feature set obtained from the fully connected layer, by using
LSTM, we can benefit from the spatial relationship of CNN
features. One way to do that is to work with the convolutional layer
as a set features for each image. Many variants can be derived from
this, for example, by learning the weighted contribution of each
feature through an attention mechanism [7].

Recent advances in image captioning have shown that the use
of CNN as a feature extractor for a given input image is powerful.
The feature representation obtained is used as the input of a
recurrent neural network and trained in an ‘end-to-end’ fashion.
Following this trend, one could be attempting to use a more
complex model for RS image classification. Here, we argue that for
this task a fixed length feature representation is, in fact, robust to
encapsulate discriminative information. Indeed, it is known that
RNN suffers from the long-term dependency problem, that is the
longer the sequence, the harder the task of remembering. However,
on the other hand, the classification problem of RS images is a
multi-class problem, and the datasets used in our experiments are
fairly small. Thus, it is more appropriate to employ a fixed length
feature representation for our input image.

3.1 CNN as a generic feature extractor

The idea of using deep convolutional activation vector as generic
feature extractor has been initially suggested in [26–28]. In [29],
the authors extensively explored this idea by employing the deep
feature vector and applying it to a classifier on various recognition

tasks. Results show that using such vectors as a generic descriptor
is, in fact, a good choice for visual recognition task.

Thus, in this work, we use a deep CNN to encode an image I
into a feature vector representation ϕ(I) ∈ ℝdI. The extraction is
done on the fully connected layer of the CNN. Particularly, we
have chosen to work with the state-of-the-art residual network
(ResNet) [12], and the features were extracted from the average
pooling layer.

3.2 RNN-based image classification

RNN has a structure in which we allow connections among hidden
units with a time delay. By doing so, we enable the model to
capture the temporal dependencies between our inputs [30]. The
problem with the standard formulation of an RNN is that it suffers
from the vanishing gradient and exploding gradient. To alleviate
these challenges, the long short-term memory (LSTM) model first
presented in [31], introduces a new type of ‘cell’ in the structure
and ‘gate’ (see Fig. 1). The memory cell c serves as the knowledge
learned from the inputs. The behaviour of the memory cell is
governed by its gates. More formally, the definition of gates and
cell are given as follows:

it = σ(Wi ⋅ [ht − 1, x t] + bi), (1)

f t = σ(W f ⋅ [ht − 1, x t] + bf ), (2)

o t = σ(Wo ⋅ [ht − 1, x t] + bo ), (3)

g t = tanh(Wg ⋅ [ht − 1, x t] + bg ), (4)

ct = f t ⊙ ct − 1 + it ⊙ g t, (5)

ht = o t ⊙ tanh(ct), (6)

where it, f t, ct, o t, ht are the input, forget, memory, output, hidden
state of the model, respectively. We denote by σ and tanh the
logistic sigmoid activation and the hyperbolic tangent. W∗ and b∗
are the weights and bias, the · and ⊙ represent matrix
multiplication and element-wise multiplication, respectively. 

Another variant of LSTM is the gated recurrent unit (GRU)
[32], which is a simpler version of the LSTM with fewer
parameters. Here, the main advantage of using such a structure is
its flexibility. Indeed, in our current implementation, we use a one-
to-one correspondence structure. However, the RNN is flexible
enough to handle other scenarios as well; for a larger-scale dataset,
just one feature vector would not be an appropriate choice, we can
thus use a set of features as the input of our model and perform the
classification. We can also consider other possibilities such as
multi-label classification [33, 34], where the task is to output a
sequence of labels for each image query. Recently, a new multi-
label dataset named Planet [https://www.kaggle.com/c/planet-
understanding-the-amazon-from-space] has been released, the goal
of this dataset is to understand the Amazon forest from high
resolution satellite imagery.

To wrap up with our solution, we take the dense vector ϕ(I)
extracted from a CNN for a given input image I. The extracted
feature serves as an initialiser of the hidden state ht of LSTM
model, x 0 = ϕ(I). Upon training our recurrent model, we are able
to classify each input (see Fig. 2). 

3.2.1 Loss function: To train our model, we use a cross-entropy
loss function defined as follows:

L = − ∑
t = 1

T
ytlog( ŷt) + γ∑

i
∑

j
θi j

2 , (7)

where yt represents the one hot vector of labels, ŷt is the predicted
class probabilities by the model at time-step t, T is the total number
of time steps, γ is the adjusted hyper-parameter (defined
empirically), and θ represents all the model parameters.

Fig. 1  LSTM unit, each component learns how to adjust its parameters
(weights) in order to pass or erase the information

 

Fig. 2  Proposed encoder–decoder framework. First, we feed the input
image I into the CNN (ResNet), and then, extract the last fully connected
layer ϕ(I) ∈ ℝdI. Finally, the recurrent model learns the corresponding
class
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4 Experimental results
To compare our model with prior state-of-the-art, we conducted an
extensive set of experiments to assess the performance of our
solution. We use three remote-sensing datasets, (1) UC Merced
Land Use [9], which includes aerial optical images. Many studies
have been conducted on it, which leads to a fair set of comparisons.
(2) RS-19 dataset [35], contains high-spatial resolution images
extracted from Google Earth. (3), Brazilian Coffee Scenes [20] is
also a popular choice for this particular task. To assess the
effectiveness of our proposed solution, we compare the feature
extracted from a pre-trained CNN along with an SVM as a
classifier denoted as SVMfts. In our model RNN implementation,
we choose to work with the GRU model because they have fewer
parameters to tune and thus they are less likely to overfit the data.
We denote this model as GRUfts.

Experiments were carried out on a server equipped with an
NVIDIA 1080 TI 11 GB GPU.

4.1 Data pre-processing

For each dataset, we first rescale the input image to the size of
248 × 248 (RGB bands). For the training data, we extract eight
copies obtained from four corners along with their respective
mirrors, whereas we only get the centre crop of size 224 × 224 for
testing.

4.2 Experimental protocol

We carry out experiments on the above mentioned three datasets.
After the pre-processing phase, we compute the feature vectors. We
do this by feeding all the images to a pre-trained CNN on
ImageNet [15]. In our study, we have chosen to work with the
ResNet [12] architecture with 50 layers, as it is considered as the
state-of-the-art for the image recognition task. In our work, we
have used the average pooling layer, as it gives us a high level
representation of the image. We report our results using K-fold
cross validation where we set K = 5 in all our experiments. For
each experiment, we held out one-fold for testing and used the
remaining four-fold for training. Fig. 3 shows the 2D scatter plot of
the resulting features, which were obtained through a ‘t-distributed
stochastic neighbouring embedding’ algorithm. As we can see, the
distribution of all the classes is well represented by our pre-trained
feature extractor, as it also helps for better initial separation of our
classifier. 

In this study, we also consider assessing our model against
traditional (handcrafted) methods. For this purpose, all images
were converted to grey-scale and the BoW model is used to
represent images. To this end, we firstly extracted patches densely
from the training images. For each chosen patch, we computed
SIFT descriptors. Then, we used the K-means clustering method on
106 SIFT descriptors to determine the visual words of the BoW
model. We used the spatial pyramid method of Lazebnik et al. [10]
to build histograms. The final size of the image feature vectors is
12,600. We used linear SVMs as a classifier since the
dimensionality is quite high.

A more complete work on the evaluation of deep learning
features with traditional ones can be found in [36], more recently in
[18], the authors presented an extensive model evaluation
comparing handcrafted solution against deep models on the RS
image classification problem.

4.3 UC Merced Land Use

This is one of the early open-source benchmarks [http://
vision.ucmerced.edu/datasets/landuse.html], which contains an
aerial image set of approximately 30 cm spatial resolution [9]. All
images were manually extracted from the U.S. Geological Survey
and collected from different regions of the country to provide
diversity in the database. As seen in Fig. 4, this dataset includes 21
classes where each class contains 100 RGB images with 256 × 256
pixels. The categories are: agricultural, airplane, baseball diamond,
beach, buildings, chaparral, dense residential, forest, freeway, golf
course, harbour, intersection, medium density residential, mobile
home park, overpass, parking lot, river, runway, sparse residential,
storage tanks, and tennis courts. 

In Table 1, we show the accuracy obtained on the UC Merced
dataset. The traditional approach [8, 11] along with our baseline
could not outreach the accuracy of 91%, in contrast, the deep
learning solutions show a good generalisation on the test set, with
an accuracy of 97.10% of the fine-tuned GoogLeNet model. Our
model performs well on this dataset, with an average recognition
rate of 97.29%. Fig. 5 shows the confusion matrix obtained for the
UC Merced Land Use dataset with our model, we can observe that
our solution performs almost perfectly for all the classes. 

4.4 RS-19

This is a public dataset [35] (see Fig. 6), which was collected from
high-resolution satellite images (up to half a metre) exported from

Fig. 3  Projection of sample features extracted from the RS-19 dataset
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Google Earth, the samples are from different regions all around the
world. The dataset includes 19 classes and there are 1005 images in
total. The size of each image is 600 × 600 pixels. As a matter of
fact, the sample images for each of the database class are collected
from different regions in satellite images of different resolution
which leads to different scales, orientations, and illuminations [35].

Results on this dataset are shown in Table 2. For small dataset
like RS-19, it is interesting to see that our model performs well
comparing with fine-tune CNN architecture like GoogLeNet which
has an accuracy of 97.78%. Our GRUfts achieved an average
accuracy of 97.81%, whereas the SVMfts has an average accuracy
of 98.01%. To see where these models fail in prediction, we choose
the best model among the cross-validation sets and we compare

Fig. 4  Random sample for some classes of the UC Merced Land Use Dataset
(a) Agricultural, (b) Airplane, (c) Baseball diamond, (d) Beach, (e) Buildings, (f) Forest, (g) Freeway, (h) Golf course, (i) Harbour, (j) Intersection, (k) Overpass, (l) Parking lot, (m)
River, (n) Runway, (o) Sparse residential

 

Table 1 Classification accuracies on the UC Merced dataset
Method Accuracy
BOW + SVM 67.52 ± 3.49
[11] 89.10
[8] 90.26
[6] 92.4
[20] 93.42
SVMfts 97 ± 0.004
[17] 97.10
GRUfts 97.29 ± 0.003

 

Fig. 5  Confusion matrix of the best performing RNN model on a UC-Merced dataset
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them together. Both GRUfts and SVMfts achieved an accuracy of
100% in all the classes except in Airport for the GRUfts and
Airport, River for the SVMfts as shown in Fig. 7. 

4.5 Brazilian Coffee Scenes

The Brazilian Coffee Scenes dataset [20] was publicly released in
2015 [http://www.patreo.dcc.ufmg.br/downloads/brazilian-coffee-
dataset/], which is a composition of scenes taken by the SPOT
sensor in 2005 over four counties in the State of Minas Gerais,
Brazil: Arceburgo, Guaranésia, Guaxupé, and Monte Santo. Image
set of each country is partitioned into multiple tiles of 64 × 64
pixels. For this task, the green, red, and near-infrared bands, are the
most representative for discriminating vegetation areas [20]. Also,
the identification of coffee crops is done manually by agricultural
research studies. The dataset is divided into two classes, the coffee
class; which is obtained by considering the images that have at
least 85% of coffee pixels, and the non-coffee class; where we only
consider the images that contain <10% of coffee pixels; the
remaining tiles are categorised as ‘mixed’ and are discarded from
the study (Fig. 8). 

For this dataset, the task is a binary classification problem. So,
in order to get more sensitive information on how well our model
performs, we report the results in terms of accuracy, precision,
recall, and F1-score. The accuracies on the test set are given in
Table 3 and Fig. 9 shows the precision-recall curves obtained for

each tested method. Our GRUfts got 88.08% in average accuracy
and the SVMfts had 88.54%. The GoogLeNet trained from scratch
performed well on this task with an accuracy of 91.83%. 

5 Discussion and conclusion
We have proposed a novel recurrent neural network architecture to
address the problem of RS image classification. Our solution has
achieved state-of-the-art on three benchmark datasets. We have
demonstrated that the use of features through a pre-trained CNN
model is, in fact, a good choice for our classifier. In contrast to
previous works on aerial image classification where the focus was
on hand-crafted features and recent CNN approaches [6, 17], we
are the first to use a recurrent neural network in this problem.

One important observation to note is that current RS image
classification datasets are not suited for deep models (unlike
Imagenet [15] and Places [38]), which can be seen from the results
obtained in RS-19 and Brazilian Coffee Scenes datasets where the
performance of the SVM-based method was comparable to our
RNN-based model. On the other hand, for UC-Merced dataset the
training size is about double of RS-19 and we were able to see the
advantage of using RNN over SVM. Recent attempts have been
made towards enlarging the remote sensing datasets like in [18, 19]
but still they are not sufficient to train very deep networks. For
larger dataset setting one could use deep models adapted to large
scale such as [39], where the authors investigated the end-to-end
solution of our proposed framework.

6 Acknowledgments
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Fig. 6  Random samples from some classes of the RS-19 dataset
(a) Football field, (b) Mountain, (c) Park, (d) Port

 
Table 2 Classification accuracies on the RS-19 dataset
Method Accuracy
BOW + SVM 75.32 ± 1.71
[37] 97.78
GRUfts 97.81 ± 0.01
SVMfts 98.01 ± 0.006
[37] 99.47

 

Fig. 7  Per-class accuracy on RS-19 over the two best model of the GRUfts
and SVMfts

 

Fig. 8  Random samples of each class of the Brazilian Coffee Scenes
dataset
(a), (b) Coffee tiles, (c), (d) Non-coffee tiles

 

Table 3 Results on the Brazilian Coffee Scenes dataset
Method Accuracy Precision Recall F1-score
BOW + SVM 46.88 ± 0.01 23.44 ± 0.01 50.0 ± 0.00 31.91 ± 0.01
[20] 83.04 — — —
GRUfts 88.08 ± 0.01 88.28 ± 0.01 88.04 ± 0.01 88.01 ± 0.01
SVMfts 88.54 ± 0.02 88.94 ± 0.02 88.54 ± 0.02 88.45 ± 0.02
[17] 91.83 — — —

 

Fig. 9  Precision-recall curves on the test set over the Brazilian Coffee
Scenes dataset
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