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Abstract

The COVID-19 pandemic initially caused worldwide con-

cerns about food insecurity. Tweets analyzed in real-time

may help food assistance providers target food supplies to

where they are most urgently needed. In this exploratory

study, we use natural language processing to extract senti-

ments and emotions expressed in food security-related

tweets early in the pandemic in U.S. states. The emotion

joy dominated in these tweets nationally, but only anger,

disgust, and fear were also statistically correlated with

contemporaneous food insufficiency rates reported in the

Household Pulse Survey; more nuanced and statistically

stronger correlations are detected within states, including

a negative correlation with joy.
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The SARS-Cov-19 pandemic not only raised concerns about the resilience of the global food sys-
tem (Laborde et al., 2020; Goetz et al., 2020; Johansson et al., 2021; Ridley & Devadoss, 2021 for
U.S. fruits and vegetables; Charlton & Castillo, 2021 for labor supply issues), but it also caused
higher household food insufficiency (FI) rates (Ziliak, 2021; Jablonski et al., 2021; Ahn & Bailey
Norwood, 2021; Gundersen et al., 2021; Tian et al., 2021; Zhou et al., 2021); here we use the
terms food insecurity and food insufficiency interchangeably. Identifying specific sub-national
locations where problems exist either in terms of food access (demand or ability to pay) or food
availability (supply issues) is important for policymakers and welfare agencies concerned with
the population's food security status. In the United States, state-level information about house-
hold FI was collected weekly during the pandemic by the U.S. Census Bureau in the Household
Pulse Survey (HPS).1 FI is defined in the survey as the percent of adults in households where there
was either sometimes or often not enough to eat in the last 7 days.

To address problems such as pandemic-related food insufficiency, affordable and readily
available real-time data are needed. Surveys tend to be costly, and results are available only
with delays (see also the discussion in Ahn & Bailey Norwood, 2021). As Coble (2020, p. 295)
points out, “Einav and Levin (2014) emphasize that economics has moved toward greater focus
on empirical work and that the data revolution occurring in our society makes available new,
large-scale data.” However, while big data analysis is increasingly common in some areas of
agriculture, such as crop and soil science (Bronson & Knezevic, 2016; Coble et al., 2018; Huang
et al., 2018), its adoption in the social sciences has been more gradual. Important sources of big
data for researchers include grocery store scanners as well as social media such as Twitter
streams, which have been used in studies designed to minimize supply chain waste (Mishra &
Singh, 2018), improve efficiency (Singh et al., 2018), or to assess responses to COVID-19 along
supply chains (Sharma et al., 2020). Other studies use social listening tools such as NetBase,
which collects data from discussion streams, social networking, Twitter, product reviews, and
others. Widmar et al. (2020) used NetBase to capture social media posts to analyze
U.S. consumers' perceptions of egg-laying hen housing, and Jung et al. (2021) used it to analyze
food safety media attention related to flour.

Twitter offers near real-time access to public user posts, which have been shown to provide
insights into user behavior, emotional state, and sentiment (Buettner, 2017). Researchers have
studied public sentiment on Twitter during the COVID-19 pandemic (Abd-Alrazaq et al., 2020;
Barkur & Vibha, 2020; Dimitrov et al., 2020; Lwin et al., 2020) primarily by applying “off-the-
shelf” models (Gupta & Yang, 2018; Loria et al., 2014; Thelwall et al., 2010) to sets of COVID-
19-related tweets. These endeavors mostly use general-purpose sentiment analysis models such
as SentiStrength (Thelwall et al., 2010), CrystalFeel (Gupta & Yang, 2018), or TextBlob (Loria
et al., 2014). The models use manual methods such as a dictionary to map each word to a senti-
ment score, counts and/or frequencies of positive and negative words, and part of speech tags.
While these studies provide valuable information, off-the-shelf models are based on classical
machine learning (ML) approaches (e.g., support vector machines, logistic regression, and naive
Bayes) that use hand-crafted features (e.g., bigrams, trigrams, and word-sentiment dictionaries)
without fully leveraging recent advances in deep learning and natural language processing
(NLP) (Deng & Liu, 2018; Goldberg, 2017; Goodfellow et al., 2016).

In this article, we analyze sentiments and emotions expressed in tweets within the
United States to identify potential associations between real-time data and the status of house-
hold food insecurity at the state-level. We propose an improved, general-purpose sentiment
algorithm that applies state-of-the-art NLP techniques to a purposefully curated set of tweets to
gauge online sentiments (i.e., positive, negative, or neutral) and emotions (i.e., anger, disgust,
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fear, joy, sadness, surprise, or neutral) with respect to food insecurity during the COVID-19
pandemic that are geo-tagged using a novel approach. We suggest this as the first step in a line
of work leading to a potential early-warning system for assisting populations with food security-
related concerns.

We find that after the neutral sentiment, joy is the dominant emotion expressed in food (in-)
security related tweets in the first 6 months of the pandemic, possibly reflecting relief that the
U.S. food system did not collapse despite dire early warnings (Barrett, 2020; Macias, 2020;
Poppick, 2020). We then examine simple (unconditional) correlations between these real-time
data and state-level household FI conditions as measured by the HPS over time. At the national
level, only fear, anger, and disgust have a statistically significant and positive correlation with
changes in contemporary food insufficiency in a state. As expected, the negative sentiment is
correlated with food insufficiency rates at the state level. While these national level correlations
are small (<0.200), we obtain much larger ones (>0.500) at the level of individual states.

METHODS: AUTOMATED TWEET EXTRACTION AND
SENTIMENT/EMOTION TAGGING

In this section, we briefly describe the tools used (a) to extract and geo-tag food insecurity-
related tweets to the 50 states and Washington, DC; and (b) the ML model architecture used to
attach sentiments and emotions to each tweet.

Extraction of tweets related to food insufficiency in U.S. states

We start with the GeoCOV19 dataset (Qazi et al., 2020) that consists of hundreds of millions of
multilingual tweets posted worldwide related to the COVID-19 pandemic and extract all
English-language tweets posted between February 1, 2020 and August 31, 2020. This period
includes Phase I of the Household Pulse Survey administered by the U.S. Census, from April
27, 2020 to July 20, 2020. As tweets in this dataset cover a wide range of topics related to
COVID-19 and originate from different countries, we only select tweets related to FI posted
from the United States. For this purpose, we first apply a filter using the geolocation informa-
tion available with tweets, including geocoordinates, place tags, and location mentions in the
text (see Qazi et al., 2020 for details).

Next, we manually curated a set of (N = 138) key terms that are relevant to the topic of food
insecurity or insufficiency. These are shown in Table S1 in the supplemental materials and
include the terms food availability, shortage, food acceptability, and food adequacy. These terms
were then used to form logical expressions and to retrieve tweets that match one or more of
them. The filtering steps yielded 1,275,463 tweets over the period February 1, 2020–August
30, 2020, that are geolocated in the United States and related to food insecurity or insufficiency.

Figure 1a shows the daily frequency of all tweets and food insufficiency-related tweets
world-wide over the period shown, which starts before and ends after Phase I of the HPS.
Figure 1b shows all food insufficiency related tweets specific to the United States. A gradual
increase is evident in the volume of tweets starting from the last week of February 2020, similar
to that observed globally, with a significant peak in the last week of April, and other peaks
occurring in June and July. The U.S. peaks tend to occur slightly later than those in the global
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data series. We aggregate these daily tweets to a weekly basis that matches the 12 weeks of data
from the Household Pulse Survey Phase I.

In Figure 2a we map the distribution of food sufficiency-related tweets by U.S. states nor-
malized by all tweets and averaged over the 12-weeks corresponding to those of the HPS Phase
I food insufficiency data. High tweet rates in West Virginia and Iowa stand out over this period,
along with low rates in South Dakota and Pennsylvania, among other states. This suggests that
the importance of food insufficiency in motivating tweets in the former two states was greater
during the first few months of the pandemic compared to the latter, but we do not know
whether they reflect an absence of food sufficiency, or not.2 In particular, these numbers tell us
nothing about the sentiments or the emotions associated with the tweets; these could have been
positive, negative, or neutral in the case of sentiments, and emotions varying from anger and
fear to relief (joy) could be motivating or captured in the tweets. To detect these nuances, we
next applied classifiers that use a language model (LM) based on artificial intelligence.

Language modeling

We use the Bidirectional Encoder Representation from Transformers (BERT) LM described in
Devlin et al. (2019) to process the food insecurity-related tweets.3 BERT uses the text contained
in each tweet to construct an internal representation of the tweet that is then used to classify
various qualities of the tweet (such as emotions or sentiments). In our case, given a food insuffi-
ciency related tweet, BERT produces as output the sentiment(s) and emotion(s) conveyed by

FIGURE 1 Global and U.S. food-insufficiency-related tweets. Food security/insecurity are based on terms in

table S1 of supplemental materials Source: Qazi et al., 2020 and authors [Color figure can be viewed at

wileyonlinelibrary.com]
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the text of the tweet. The term “bidirectional” refers to the fact that text strings are read both
forwards and backwards for context during the data processing.

We briefly describe relevant aspects of BERT here; the original paper by Devlin et al. (2019)
provides a more thorough description. BERT was developed on the principle that the meaning

FIGURE 2 State-level distribution of food insufficiency-related tweets and Household Pulse Survey (HPS)

food insufficiency rate. FI, food insufficiency. Source: Qazi et al. (2020) for (a) and household pulse survey for

(b), and authors [Color figure can be viewed at wileyonlinelibrary.com]

FOOD INSUFFICIENCY AND TWITTER EMOTIONS DURING A PANDEMIC 5

http://wileyonlinelibrary.com


of words is defined by their context. To “understand” or interpret language, however, BERT
needs to “learn” about it, just as humans do. To accomplish this, BERT originally “learned”
about the English language by being set to browse the entire internet instead of reading a dictio-
nary (more akin to previously used approaches). Browsing the internet, BERT can discern the
meaning of words by “seeing” how they are used instead of being “told” what they mean.

As part of the automated learning, BERT trains itself by creating small fill-in-the-blank tests
for itself to ensure it understands the language being conveyed4; this is the ML aspect of the
procedure. The hypothesis is that if BERT can correctly fill-in-the-blank, then it sufficiently
understands the English language. For example, when BERT encounters the sentence “I love
you” online, it creates the fill-in-the-blank test of “I love _____” for itself. Using the broader
context of the text string that has been read, the likelihood is high that this blank is correctly
filled with the word “you.” If instead the fill-in-the-blank test were “I go to the gym every day, I
love _____” then BERT may fill the blank with a word such as “exercise.” By creating millions
of such fill-in-the-blank tests for itself as it browses the internet, BERT builds an “understand-
ing” of the English language.

After many days of browsing the internet and self-testing, BERT has developed a strong
understanding of the English language, approaching human-level performance on fill-in-the-
blank tests. Given this strong general understanding of the language, BERT is an excellent
starting point for more fine-grained language-related tasks, such as those we pursue here. We
use the BERT language model as the backbone of our architecture.

When given a piece of text to process, BERT first converts the text from words to tokens, or
subword pieces, and each token has a corresponding embedding. Doing so allows BERT to
understand a wider range of language with less overhead—instead of having to learn a different
representation for each word in a language, BERT only needs to learn a representation for the
tokens and can understand words as the union of one or more tokens. A special classification
token called [CLS] is then added to every input. During processing, BERT draws upon all parts
of the corresponding input to saturate the [CLS] token with key aspects of the language given
as input. The processed [CLS] embedding can then be used as a condensed representation of
the original input text.

Once the input representations have been obtained, they are processed by BERT. In each
layer the token representations are updated based on their context—that is, the surrounding
tokens in the input. The exact way in which BERT processes inputs is based on their content;
subsequent representations of prepositions are informed by the corresponding object, passive
auxiliary verbs by the verbs they modify, and direct objects by their verbs (Clark et al., 2019).
The output of BERT is a rich, contextualized representation of the static embeddings it was ini-
tially given.

To process a piece of text, BERT includes as an output a representation of the entire text.
This representation is a 1�H vector, where H is the “hidden size” of BERT (see Devlin
et al., 2019 for details). Then, for each task that BERT is trained to perform two heads are
added, one a projection head and another a prediction head. Here head refers to a matrix of
learnable weights. The projection head is first used to project the generic text representation to a
task-specific embedding-space of size H. Concretely, the projection heads are of size H�H 0

t,
where H 0

t is the embedding space for task t. Then, the output of the projection head is passed
through the prediction head to make the ultimate predictions for task t. Concretely, the predic-
tion heads are of size H 0

t�Gt where Gt is the output size of task t.
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Training

We use BERT's general knowledge of language as a starting point to fine-tune the model for
two specific NLP tasks, sentiment analysis and emotion detection. In fine-tuning the model, we
train it to perform two other tasks as well—stance detection (Gorrell et al., 2018) and informa-
tion disclosure (Jaidka et al., 2020). Much like a developing athlete can benefit from playing
multiple sports—using proficiencies developed in one sport to improve ability in another—so
does our model (Zhang & Yang, 2021). We briefly describe the datasets used for training in sen-
timent analysis and emotion detection below.

Each task used to train our model is a classification task, so our model minimizes a criterion
function, which is the average cross entropy for all tasks during training. The cross entropy is
calculated as described in Equation (1), where B is a batch of training records, {T} denotes the
set of training tasks present in the batch, B(t) is the subset of batch records corresponding to
task t, y is the set of ground-truth labels, and p the model predictions. The inner summand cal-
culates the per-task entropy while the outer summand averages the loss across tasks. Denote jTj
to be the number of tasks in the set {T}. Then the cross-entropy function is as follows:

H y,pð Þ¼�
X

t � Tf g

1
Tj j

X

i � B tð Þ
yt,ilog pt,i

� � ð1Þ

Sentiment detection

We used three datasets to train our model to perform sentiment analysis: (1) Stanford Senti-
ment Treebank (Socher et al., 2013), (2) Sentiment 140 (Go et al., 2009), and (3) SemEval 2017
Task4A (Rosenthal et al., 2017). The Stanford Sentiment Treebank is a collection of 215,154
phrases from online movie reviews, each annotated for sentiment by three authors. We use the
5-class version of the dataset (SST-5) where the sentiment of each tweet is given on a five-point
Likert scale.

The Sentiment140 and SemEval2017 Task4A datasets are like SST-5 in many regards but
were originally sourced from Twitter. The dataset for SemEval2017 Task 4A contains around
50,000 tweets that have been annotated by crowd workers as expressing either negative, neutral,
or positive sentiment. Sentiment140 is the largest sentiment analysis dataset used in this study,
consisting of 1.4 M tweets. Tweets in Sentiment140 are given noisy binary annotations derived
from the presence of emoticons in the original tweet. For example, a tweet containing “:)” is
labeled as positive while a tweet containing “:(” is labeled negative. We removed emoticons
from the tweets prior to inclusion in the dataset so as not to bias our model. Were the emoticons
not removed, the model would not be required to learn about the language—if it detected a “:)”
it could simply give the positive label without looking at the surrounding language. Example
records from each dataset and their corresponding sentiment label are presented in Table S3.

Emotion detection

For this study, we used the GoEmotion dataset, a collection of 58,000 Reddit comments anno-
tated as expressing one or more of 27 possible emotions or neutrality by three annotators
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(Demszky et al., 2020). As our study is not intended to develop a fine-grained emotional under-
standing, we use the mapping provided by these authors to map the 27 original emotion classes
to six emotions, plus neutral, which encompass the 27 original classes. These six universal emo-
tions are often referred to as Ekman emotions (Ekman, 1992), and datasets for emotion detec-
tion typically adopt a coding scheme derived from these emotions. All humans can feel these
six emotions.

After the mapping, records in this dataset contain one or more of seven possible labels that
our model learns to detect: (1) anger, (2) disgust, (3) fear, (4) joy, (5) sadness, (6) surprise, or
(7) neutral. Example records and their corresponding emotion labels are presented in Table S4.

Food insufficiency-related examples

To illustrate the output of the above analysis for our application using BERT, Table 1 shows
sample tweets that are related to some aspect of food insecurity classified as expressing a nega-
tive, neutral, or positive sentiment, along with one or more of seven emotions, including a neu-
tral emotion. Specific probabilities are attached to each tweet for the different sentiments and
emotions. For example, the first tweet is classified as negative with a probability 98.4%, with
very small odds that it is neutral (1.5%) or positive (0.2%). Likewise, the chances are very high
(81.6%) that the main emotion expressed in this tweet is anger, with disgust and the neutral
emotion having much smaller odds. Neutral is a leftover bin that is used as a residual to arrive
at 100% classification both for sentiments and emotion.

Testing the model

As a reference to how well our model performs the sentiment analysis, two human annotators
annotated the same 100 tweets for the sentiment. The annotators were asked to label each tweet
as either negative, neutral, or positive. In the three-class setting, the annotators had an agree-
ment of 0.41 in terms of Cohen's kappa, which measures the overall agreement between two
annotators classifying items into a given set of categories (Kvålseth, 1989). For tweets that nei-
ther annotator labeled as neutral, the annotators had an agreement of 0.9 in terms of Cohen's
kappa. We compare the performance of our model with that of two common “off-the-shelf”
models on food-related tweets where both annotators agreed on the annotation.5 Comparing
our results with those of common off-the-shelf models and human annotators, we find that our
model outperforms these common models and achieves a high level of agreement with the
human annotators.

For most tweets, BERT calculates a relatively high probability that a particular emotion
dominates. Competing emotions appear with relatively high odds only for tweets No. 4 and 5 in
Table 1, such as anger, disgust, and sadness for tweet No. 4, and fear and sadness for tweet
No. 5. Tweet No. 6 illustrates how the emotion joy can be associated even with a food
insecurity-related tweet. As can be seen below, joy is in fact the most strongly expressed among
the seven emotions. Tweet No. 6 is classified with almost complete certainty in the joy category,
and it suggests gratitude for the fact that the U.S. food supply chain continued to function
despite dire early warnings and predictions of collapse. Tweets No. 7–9 similarly show why the
emotion of joy is plausible even in the face of a potentially catastrophic pandemic.
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DATA DESCRIPTION AND ANALYSIS

FI from the HPS

Figure 3 shows the average and variation across states of changes in the state-level household
FI rates over time, based on Phase I HPS data, covering the end of April through July 2020. The
average household FI rate at the end of Phase I was higher (10.7% of respondents indicating FI)
than at the beginning (8.99%), which is consistent with the worsening effects of the pandemic
over time, even as household stimulus payments started to roll out soon after April 15.

Figure 2b maps the distribution of the FI variable at the state level averaged over the
roughly 3 months of data collected in Phase I of the Household Pulse Survey. The highest FI
rate was recorded in Mississippi, which also leads the U.S. states in terms of poverty rates. High
FI rates are also recorded in other southern states, especially Louisiana and Texas, as well as
Nevada, along with New York and California. Low rates were recorded in Minnesota, Iowa,
Massachusetts, and the northern New England states.

Figure S1 in the supplemental materials shows tweet-derived sentiments and emotions
across each of the states, averaged over the 12-week period. The emotion anger was prominent
in tweets emanating from numerous southern states as well as Idaho and Wyoming. Anger
rates were comparatively low in Iowa as well as New York and the southern New England
states. In contrast, fear was expressed most strongly on average over this period in Iowa, per-
haps ironically given the state's status as being in the nation's breadbasket. Joy, surprise, and the
negative sentiment were also expressed most commonly in that state, which along with
Nebraska and West Virginia also had the highest share of FI-related tweets. California, known
for its general state of happiness,6 had the lowest score on the joy emotion. New Jersey, South
Dakota, and Pennsylvania had the lowest shares of tweets dealing with food insecurity
(Figure 2a). The emotions of disgust and sadness were strongest in Oklahoma, while the

FIGURE 3 Average (and variation across states in) food insufficiency, the United States. Source: Household

Pulse Survey (HPS) and authors' calculation. The blue line represents the averaged values of food insufficiency

rates across states, and the shaded area represents the confidence interval with two standard deviations from

the mean [Color figure can be viewed at wileyonlinelibrary.com]
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adjacent state of Arkansas had one of the lowest sadness scores. Figure S2 shows line graphs for
the top and bottom three states in terms of emotions and the percent of tweets related to FI, to
provide a sense of the relative variation in these variables over time.

Sentiments and emotions from Twitter

The negative sentiment dominated the FI-related tweets, especially at the beginning and near
the end of Phase I. The positive sentiment shows an inverted pattern to the dominant sentiment,

FIGURE 4 Food-related Twitter data averaged in 6-h buckets, the United States. Panel (a) shows the

predicted shares of tweets classified into three sentiments, and panel (b) shows the predicted shares of tweets

classified into seven emotions. Source: Authors [Color figure can be viewed at wileyonlinelibrary.com]
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moderated by the neutral sentiment. The sentiments expressed in these tweets, averaged in 6-h
windows, are presented in Figure 4a. In Figure 4b, we plot the Twitter emotions data over time,
averaged across the states. The strongest emotion (or lack thereof) recorded is that of neutral,
followed by joy, which also spikes sharply toward the end of the period shown, and anger. The
prominence of the emotion joy is on the surface surprising, but may as already noted reflect
relief over the fact that the nation's food supply was not affected as adversely as initially
predicted. Descriptive statistics for each of these variables are presented in Table S5.

Correlation analysis results

National level simple pairwise correlation coefficients among the variables of interest are shown
in Table 2. Although the sizes of the coefficients are relatively small, the emotions of fear, anger
and disgust are positively correlated with contemporaneous household FI, with disgust and
anger each showing a value of about 0.16 that is significant at below the 1% level. This is not
surprising given that these two emotions, in the context of food insecurity-related tweets, are
virtually indistinguishable from one another (the simple correlation is 0.945). Disgust, anger,
and fear are also strongly correlated. In addition, the negative sentiment is positively correlated
with FI (statistically significant but weakly, at 0.106).

The fact that joy is the most common emotion and yet not statistically correlated with FI
over time nationally suggests that it did not change on a weekly basis in the same way as the
household FI situation. Instead, we argue that this reflects a shared feeling of gratitude or relief
that food supplies generally remained steady early in the pandemic, even if specific foods were
not available, such as particular cuts of meat, types of bread or ice cream flavors.

Some of the other national-level correlation coefficients in Table 2 also are revealing,
although generally as expected. For example, the negative sentiment is strongly correlated
(>0.700) with fear, anger, and disgust. It is also negatively correlated (�0.672) with joy. Table 2
also shows that the neutral sentiment is strongly negatively correlated with fear, anger, and dis-
gust, suggesting that these strong feelings are unlikely to coincide with a sentiment of neutrality,
as might be expected. At the same time, even though the correlation coefficients in Table 2 are
statistically different from zero, they tend to be small, suggesting relatively low correlations.

To further explore these relationships, we calculated the coefficients of correlation between
emotions and FI on a state-by-state basis (Table 3). Focusing first on the emotion of fear—
which we expect to be associated with a lack of food for reasons either of access (e.g., lack of
income) or availability (e.g., supply bottlenecks)—we obtain statistically significant high
(>0.500) and positive correlation coefficients for California (0.626), Illinois (0.577), New York
(0.866), Texas (0.670) and Wisconsin (0.641). In 12 of the 15 cases where the correlation coeffi-
cient is of moderate size (i.e., between 0.30 and 0.49), it is also positive, indicating that FI in a
state is associated with a higher level of fear, as expected.

In 12 states, we also see statistically significant, positive correlation coefficients between FI
and the emotions of anger or disgust. There are again 15 states in which the coefficient is of
moderate size, although not significant, and here again, the sign of the coefficient is negative in
only three states. For the emotions joy (and sadness) we find that in the four (five) states where
the coefficient is statistically different from zero, it is as expected negative (positive). Table 3
also shows that the share of tweets related to food insufficiency can have strong negative or pos-
itive correlations with actual food insufficiency rates within states.
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TABLE 3 State-level correlations between food insufficiency (FI) rates, FI-related tweets, and emotions

State %FI Anger Disgust Fear Joy Sadness Surprise

Alabama �0.691** 0.210 0.166 0.173 �0.062 0.230 �0.099

Alaska �0.082 0.014 �0.001 �0.031 0.183 �0.080 �0.382

Arizona �0.011 0.676** 0.685** 0.402 0.100 0.277 �0.202

Arkansas 0.023 0.161 0.366 0.484 0.392 0.293 0.014

California �0.263 0.700** 0.705** 0.626** �0.714*** 0.533* �0.314

Colorado �0.242 �0.081 �0.132 �0.314 0.086 �0.020 �0.130

Connecticut �0.374 �0.315 �0.338 �0.227 �0.074 �0.334 0.342

Delaware �0.110 0.202 0.226 0.168 0.230 0.347 �0.113

District of Col. �0.002 �0.013 0.102 0.150 0.087 0.196 0.199

Florida �0.163 �0.008 �0.075 �0.102 �0.159 �0.020 0.156

Georgia 0.078 0.415 0.354 0.384 �0.271 0.449 0.488*

Hawaii �0.429 0.403 0.452 0.362 �0.108 0.425 0.244

Idaho 0.352 0.438 0.480 0.260 0.223 0.219 0.227

Illinois �0.051 0.511* 0.566* 0.577** �0.428 0.325 0.522*

Indiana �0.233 �0.299 �0.345 �0.465 0.270 �0.388 �0.310

Iowa �0.382 0.149 0.129 0.056 �0.327 �0.205 0.109

Kansas �0.133 0.151 0.345 0.352 �0.525* �0.025 0.178

Kentucky �0.485* �0.172 �0.230 �0.034 0.007 0.015 0.127

Louisiana 0.145 0.374 0.260 0.011 0.217 0.047 0.017

Maine 0.172 �0.271 �0.224 �0.076 0.428 0.095 �0.219

Maryland 0.293 0.025 �0.028 0.024 �0.061 0.240 0.497*

Massachusetts 0.638** 0.110 0.134 �0.075 0.230 0.344 0.151

Michigan �0.110 �0.024 �0.042 0.121 �0.094 �0.139 0.148

Minnesota �0.469 0.500* 0.459 0.427 �0.040 0.364 0.578**

Mississippi �0.135 0.124 0.194 0.232 �0.255 0.382 0.104

Missouri �0.420 �0.010 �0.039 �0.010 0.138 0.414 0.188

Montana �0.651** 0.238 0.057 �0.278 0.453 �0.467 �0.300

Nebraska 0.159 0.104 0.058 0.198 0.355 0.510* 0.005

Nevada �0.326 0.354 0.395 0.280 �0.119 0.177 �0.420

New Hampshire �0.211 �0.415 �0.341 �0.067 0.008 0.277 �0.043

New Jersey 0.069 �0.259 �0.210 �0.165 0.002 �0.337 0.388

New Mexico 0.191 0.443 0.531* 0.426 �0.509* 0.459 �0.010

New York 0.436 0.752*** 0.845*** 0.866*** �0.600** 0.297 0.271

North Carolina 0.032 0.054 0.066 �0.069 �0.041 �0.135 �0.247

North Dakota �0.697** �0.053 �0.256 �0.288 0.347 �0.370 0.013

Ohio �0.200 �0.151 �0.145 �0.079 0.286 �0.016 0.160

Oklahoma �0.176 0.108 0.309 0.273 �0.392 0.481 �0.254

Oregon 0.003 0.256 �0.100 �0.332 0.153 �0.179 �0.612**

(Continues)
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Thus, while further analysis is needed, our initial results suggest that there is potential in
using real-time tweets to begin to assess in which states food insufficiency may be a concern.
Furthermore, while most of the correlation coefficients that are statistically significant are from
states with larger cities and populations (such as California), we obtained statistically significant
correlation coefficients for certain emotions even in states with smaller populations, such as
Kansas ( joy), Nebraska (sadness), Oregon (surprise) and Rhode Island (anger and disgust). In
some cases, it may be desirable to use a regional approach to prediction, by combining data
from states that form natural regions, such as North and South Dakota or northern New
England. Other extensions may include using more refined or shorter time periods, such as
biweekly or monthly data. For example, our preliminary analysis suggests that the positive cor-
relations between FI and anger, disgust and fear at the national level were strongest in week
12 (July 16–21) of the pandemic, and weakest in week 8 (June 18–23). On a monthly basis, there
as a positive and significant correlation between FI and anger or fear in May and July, but not
in June. Last, it is also possible to identify specific locations at the substate level using longitude
and latitude tweet tags; these locations could be aggregated to county or zip code levels.

SUMMARY AND CONCLUSION

This article illustrates the application of large-scale, real-time data to understanding a
population's sentiments and emotions relative to food insufficiency status in the early days of a
pandemic. The underlying goal of the paper is to begin to shed light on whether and how such
real time data could be used by policymakers and other entities to detect when and where local-
ized food security problems may arise. Our analysis and results suggest on a preliminary basis
that social media platforms such as Twitter can provide insights into the emotions and

TABLE 3 (Continued)

State %FI Anger Disgust Fear Joy Sadness Surprise

Pennsylvania 0.410 0.613** 0.533* 0.375 �0.073 �0.141 �0.180

Rhode Island 0.669** 0.490* 0.544* 0.404 0.148 0.439 �0.131

South Carolina 0.623** �0.018 �0.013 �0.030 0.364 0.313 �0.120

South Dakota �0.302 0.342 0.260 0.383 �0.156 �0.074 0.241

Tennessee �0.451 0.098 0.164 0.200 0.076 0.148 �0.041

Texas �0.119 0.662** 0.712*** 0.670** �0.043 0.612** �0.148

Utah 0.511* �0.046 �0.092 �0.252 0.059 �0.017 �0.431

Vermont �0.260 0.28 0.490* 0.471 0.088 0.543* �0.427

Virginia �0.014 0.427 0.435 0.467 �0.007 0.350 0.501*

Washington �0.024 �0.081 0.148 0.101 0.075 0.032 0.186

West Virginia 0.074 �0.195 �0.197 �0.261 �0.058 �0.398 �0.139

Wisconsin �0.109 0.592** 0.575* 0.641** �0.047 0.537* 0.092

Wyoming �0.245 0.567* 0.343 0.124 �0.213 �0.234 0.109

Note: Green shading is for coefficients that are statistically different from zero; dark gray is for coefficients ranging in

0.300–0.490.
***p < 0.01, **p < 0.05, *p < 0.1. Source: Authors.
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sentiments of users in a given community (state) over time-related to a concern such as food
insufficiency or security. One additional important reason for conducting this kind of analysis
is to assess whether Twitter data could be used in place of a more expensive survey, such as the
U.S. Census Bureau's Household Pulse Survey to predict where food insecurity may be a prob-
lem. Fully answering this question will require more robust regression analysis with an appro-
priate formal structural model and more control variables, allowing predictions to be made. Of
course, the population using Twitter is only a subset of the U.S. population.

While we were not able to test this explicitly, because there were no severe localized disrup-
tions to the food supply in the COVID-19 pandemic, or regions of the country with pronounced
food supply or access problems, studying tweets in the future to detect such emergencies may
prove fruitful by providing an early warning system for planners, supply chain managers and
policymakers; this was beyond the scope of our study. We can, however, conclude that tweets
expressing fear, anger and disgust were individually associated with higher household food
insufficiency rates. The fact that the emotion of joy was most frequently expressed in the food
insufficiency-related tweets over time (after the negative emotion) suggests that the Twitter pop-
ulation was at least relieved that food sufficiency or security issues were not more strongly felt
than perhaps initially predicted by media commentators. That in turn also suggests that the
U.S. food system was robust and resilient in the face of the pandemic threat.

Finally, we also suggest that this kind of analysis could potentially offer new ways of mea-
suring well-being in real time, including utility as expressed in joy and happiness. Consumer
utility is a key concept in economics, and yet its measurement remains elusive. Sentiment and
emotion analysis potentially offer economists new tools to objectively and in real-time gauge
consumer utility and thus contribute to improved policy analysis and policymaking.
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ENDNOTES
1 The HPS website is https://www.census.gov/programs-surveys/household-pulse-survey.html; as of this writing,
it has been administered in three Phases; we focus on Phase I, covering the period April 27 to July 20, 2020.
With the exception of the first survey wave (a 2-week period), Phase I was administered weekly.

2 For example, as a “breadbasket” state, tweets originating in Iowa may have anticipated positive impacts from
the pandemic due to greater global food demand, resulting in positive sentiments and emotions, whereas
tweets in West Virginia, a state with high poverty rates, may have been motivated by fear or anger, and nega-
tive sentiments, given the longer history of food insufficiency in that state.

3 See Figure S4 in supplemental materials for a diagram of the BERT process.
4 “Fill-in-the-blank” is one of two pre-training tasks, the other being next-sentence-prediction.
5 See Table S2 for the results of the agreement analysis using Cohen's Kappa and Figure S3 for related Confusion
Matrices.

6 See, for example, “Is California One of the Happiest States in the Country?” Available at https://patch.com/
california/lajolla/california-one-happiest-states-country.

FOOD INSUFFICIENCY AND TWITTER EMOTIONS DURING A PANDEMIC 19

https://www.census.gov/programs-surveys/household-pulse-survey.html
https://patch.com/california/lajolla/california-one-happiest-states-country
https://patch.com/california/lajolla/california-one-happiest-states-country


REFERENCES
Abd-Alrazaq, Alaa, Dari Alhuwail, Mowafa Househ, Mounir Hamdi, and Zubair Shah. 2020. “Top Concerns of

Tweeters during the COVID-19 Pandemic: Infoveillance Study.” Journal of Medical Internet Research 22(4):
e19016. https://doi.org/10.2196/19016.

Ahn, Sunjin, and F. Bailey Norwood. 2021. “Measuring Food Insecurity during the COVID-19 Pandemic of
spring 2020.” Applied Economic Perspectives and Policy 43(1): 162–8. https://doi.org/10.1002/aepp.13069.

Barkur, Gopalkrishna, Vibha, and Giridhar B. Kamath. 2020. “Sentiment Analysis of Nationwide Lockdown Due
to COVID 19 Outbreak: Evidence from India.” Asian Journal of Psychiatry 51(June): 102089. https://doi.org/
10.1016/j.ajp.2020.102089.

Barrett, Christopher B. 2020. “Actions Now Can Curb Food Systems Fallout from COVID-19.” Nature Food 1(6):
319–20. https://doi.org/10.1038/s43016-020-0085-y.

Bronson, Kelly, and Irena Knezevic. 2016. “Big Data in Food and Agriculture.” Big Data & Society 3(1):
2053951716648174. https://doi.org/10.1177/2053951716648174.

Buettner, Ricardo. 2017. “Predicting User Behavior in Electronic Markets Based on Personality-Mining in Large
Online Social Networks: A Personality-Based Product Recommender Framework.” Electronic Markets 27(3):
247–65. https://doi.org/10.1007/s12525-016-0228-z.

Charlton, Diane, and Marcelo Castillo. 2021. “Potential Impacts of a Pandemic on the US Farm Labor Market.”
Applied Economic Perspectives and Policy 43(1): 39–57. https://doi.org/10.1002/aepp.13105.

Clark, Kevin, Urvashi Khandelwal, Omer Levy & Christopher D. Manning 2019. “What Does BERT Look at? An
Analysis of BERT's Attention.” In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, 276–86. Florence, Italy: Association for Computational Linguistics.
https://doi.org/10.18653/v1/W19-4828.

Coble, Keith H. 2020. “Relevant and/or Elegant Economics.” American Journal of Agricultural Economics 102(2):
392–9. https://doi.org/10.1002/ajae.12017.

Coble, Keith H., Ashok K. Mishra, Shannon Ferrell, and Terry Griffin. 2018. “Big Data in Agriculture: A Chal-
lenge for the Future.” Applied Economic Perspectives and Policy 40(1): 79–96. https://doi.org/10.1093/aepp/
ppx056.

Demszky, Dorottya, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi.
2020. “GoEmotions: A Dataset of Fine-Grained Emotions.” In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 4040–54. ACL:. https://aclanthology.org/2020.acl-main.372/.

Deng, Li, and Yang Liu. 2018. Deep Learning in Natural Language Processing. Singapore: Springer.
Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. “Bert: Pre-Training of Deep Bidirec-

tional Transformers for Language Understanding.”In Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies, 1, 4171–86.
NAACL-HLT.

Dimitrov, Dimitar, Erdal Baran, Pavlos Fafalios, Ran Yu, Xiaofei Zhu, Matthäus Zloch, and Stefan Dietze. 2020.
“TweetsCOV19 – A Knowledge Base of Semantically Annotated Tweets about the COVID-19 Pandemic.” In
Proceedings of the 29th ACM International Conference on Information & Knowledge Management, October,
2991–98. https://doi.org/10.1145/3340531.3412765.

Einav, Liran, and Jonathan Levin. 2014. “Economics in the Age of Big Data.” Science 346(6210): 1243089.
Ekman, Paul. 1992. “An Argument for Basic Emotions.” Cognition & Emotion 6(3–4): 169–200.
Go, Alec, Richa Bhayani, and Lei Huang. 2009. “Twitter Sentiment Classification Using Distant Supervision.”

CS224N Project Report, Stanford, 1–12.
Goetz, Stephan J., Claudia Schmidt, Lisa Chase, and Jane Kolodinsky. 2020. “Americans' Food Spending Patterns

Explain Devastating Impact of COVID-19 Lockdowns on Agriculture.” Journal of Agriculture, Food Systems,
and Community Development 9(3): 31–3.

Goldberg, Yoav. 2017. “Neural Network Methods for Natural Language Processing.” Synthesis Lectures on
Human Language Technologies 10(1): 1–309.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cambridge, MA: MIT press.
Gorrell, Genevieve, Kalina Bontcheva, Leon Derczynski, Elena Kochkina, Maria Liakata, and Arkaitz Zubiaga.

2018. “RumourEval 2019: Determining Rumour Veracity and Support for Rumours.” ArXiv:1809.06683 [Cs],
September. http://arxiv.org/abs/1809.06683.

20 GOETZ ET AL.

https://doi.org/10.2196/19016
https://doi.org/10.1002/aepp.13069
https://doi.org/10.1016/j.ajp.2020.102089
https://doi.org/10.1016/j.ajp.2020.102089
https://doi.org/10.1038/s43016-020-0085-y
https://doi.org/10.1177/2053951716648174
https://doi.org/10.1007/s12525-016-0228-z
https://doi.org/10.1002/aepp.13105
https://doi.org/10.18653/v1/W19-4828.
https://doi.org/10.1002/ajae.12017
https://doi.org/10.1093/aepp/ppx056
https://doi.org/10.1093/aepp/ppx056
https://aclanthology.org/2020.acl-main.372/
https://doi.org/10.1145/3340531.3412765
http://arxiv.org/abs/1809.06683


Gundersen, Craig, Monica Hake, Adam Dewey, and Emily Engelhard. 2021. “Food Insecurity during COVID-
19.” Applied Economic Perspectives and Policy 43(1): 153–61.

Gupta, Raj Kumar, and Yinping Yang. 2018. “CrystalFeel at SemEval-2018 Task 1: Understanding and Detecting
Emotion Intensity Using Affective Lexicons.” In Proceedings of The 12th International Workshop on Semantic
Evaluation, 256–63. New Orleans, LA: Association for Computational Linguistics.

Huang, Yanbo, Y. U. Zhong-xin Chen, Xiang-zhi Huang Tao, and Gu. Xing-fa. 2018. “Agricultural Remote Sens-
ing Big Data: Management and Applications.” Journal of Integrative Agriculture 17(9): 1915–31.

Jablonski, Becca B. R., Joy Casnovsky, Jill K. Clark, Rebecca Cleary, Beth Feingold, Darcy Freedman, Steven
Gray, Xiaobo Romeiko, Laura Schmitt Olabisi, and Mariana Torres. 2021. “Emergency Food Provision for
Children and Families during the COVID-19 Pandemic: Examples from Five US Cities.” Applied Economic
Perspectives and Policy 43(1): 169–84.

Jaidka, Kokil, Iknoor Singh, Jiahui Liu, Niyati Chhaya, and Lyle Ungar. 2020. “A Report of the CL-Aff Off-
MyChest Shared Task: Modeling Supportiveness and Disclosure.” In AffCon@ AAAI, 118–29.

Johansson, Robert, Ashley Hungerford, Mirvat Sewadeh, and Anne Effland. 2021. “Unprecedented Crisis Calls
for Unprecedented Policy Responses.” Applied Economic Perspectives and Policy 43(1): 120–31.

Jung, Jinho, Nicole O. Widmar, Sangavi Subramani, and Yaohua Feng. 2021. “Online Media Attention Devoted
to Flour and Flour-Related Food Safety in 2017 to 2020.” Journal of Food Protection 85(1): 73–84. https://doi.
org/10.4315/JFP-21-085.

Kvålseth, Tarald O. 1989. “Note on Cohen's Kappa.” Psychological Reports 65(1): 223–6. https://doi.org/10.2466/
pr0.1989.65.1.223.

Laborde, David, Will Martin, Johan Swinnen, and Rob Vos. 2020. “COVID-19 Risks to Global Food Security.”
Science 369(6503): 500–2.

Loria, Steven, Pete Keen, Matthew Honnibal, Roman Yankovsky, David Karesh, and Evan Dempsey. 2014.
“Textblob: Simplified Text Processing.” https://textblob.readthedocs.io/en/dev/. Accessed October 11, 2021.

Lwin, May Oo, Jiahui Lu, Anita Sheldenkar, Peter Johannes Schulz, Wonsun Shin, Raj Gupta, and Yinping
Yang. 2020. “Global Sentiments Surrounding the COVID-19 Pandemic on Twitter: Analysis of Twitter
Trends (Preprint).” Preprint. JMIR Public Health and Surveillance. https://doi.org/10.2196/preprints.19447.

Macias, Chris J. 2020. “Is the Food Supply Strong Enough to Weather COVID-19?” University of California,
Davis. https://www.Universityofcalifornia.Edu/News/Food-Supply-Strong-Enough-Weather-Covid-19.

Mishra, Nishikant, and Akshit Singh. 2018. “Use of Twitter Data for Waste Minimisation in Beef Supply Chain.”
Annals of Operations Research 270(1): 337–59.

Poppick, Laura. 2020. “The Effects of COVID-19 Will Ripple through Food Systems.” Scientific American, 26.
Qazi, Umair, Muhammad Imran, and Ferda Ofli. 2020. “GeoCoV19: A Dataset of Hundreds of Millions of Multi-

lingual COVID-19 Tweets with Location Information.” SIGSPATIAL Special 12(1): 6–15.
Ridley, William, and Stephen Devadoss. 2021. “The Effects of COVID-19 on Fruit and Vegetable Production.”

Applied Economic Perspectives and Policy 43(1): 329–40.
Rosenthal, Sara, Noura Farra, and Preslav Nakov. 2017. “SemEval-2017 Task 4: Sentiment Analysis in Twitter.”

In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 502–18. Vancou-
ver, Canada: Association for Computational Linguistics. https://doi.org/10.18653/v1/S17-2088.

Sharma, Amalesh, Anirban Adhikary, and Sourav Bikash Borah. 2020. “Covid-19's Impact on Supply Chain
Decisions: Strategic Insights from NASDAQ 100 Firms Using Twitter Data.” Journal of Business Research
117: 443–9.

Singh, Akshit, Nagesh Shukla, and Nishikant Mishra. 2018. “Social Media Data Analytics to Improve Supply
Chain Management in Food Industries.” Transportation Research Part E: Logistics and Transportation Review
114: 398–415.

Socher, Richard, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013. “Recursive Deep Models for Semantic Compositionality over a Sentiment
Treebank.” In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
1631–42.

Thelwall, Mike, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas. 2010. “Sentiment Strength Detec-
tion in Short Informal Text.” Journal of the American Society for Information Science and Technology 61(12):
2544–58.

FOOD INSUFFICIENCY AND TWITTER EMOTIONS DURING A PANDEMIC 21

https://doi.org/10.4315/JFP-21-085
https://doi.org/10.4315/JFP-21-085
https://doi.org/10.2466/pr0.1989.65.1.223
https://doi.org/10.2466/pr0.1989.65.1.223
https://textblob.readthedocs.io/en/dev/.
https://doi.org/10.2196/preprints.19447
https://www.universityofcalifornia.edu/News/Food-Supply-Strong-Enough-Weather-Covid-19
https://doi.org/10.18653/v1/S17-2088


Tian, Zheng, Claudia Schmidt, and Stephan J. Goetz. 2021. “The Role of Community Food Services in Reducing
U.S. Food Insufficiency in the COVID-19 Pandemic.” Journal of Agricultural and Resource Economics Pre-
print (Preprint). https://doi.org/10.22004/ag.econ.313316

Widmar, Nicole, Courtney Bir, Christopher Wolf, John Lai, and Yangxuan Liu. 2020. “#Eggs: Social and Online
Media-Derived Perceptions of Egg-Laying Hen Housing.” Poultry Science 99(11): 5697–706.

Zhang, Yu, and Qiang Yang. 2021. “A Survey on Multi-Task Learning.” ArXiv:1707.08114 [Cs], March. http://arxiv.
org/abs/1707.08114.

Zhou, Yujun, Erit Lentz, Hope Michelson, Chungman Kim, and Kathy Baylis. 2021. “Machine Learning for Food
Security: Principles for Transparency and Usability.” Applied Economic Perspectives and Policy. https://doi.
org/10.1002/aepp.13214.

Ziliak, James P. 2021. “Food Hardship during the COVID-19 Pandemic and Great Recession.” Applied Economic
Perspectives and Policy 43(1): 132–52.

How to cite this article: Goetz, Stephan J., Connor Heaton, Muhammad Imran,
Yuxuan Pan, Zheng Tian, Claudia Schmidt, Umair Qazi, Ferda Ofli, and Prasenjit Mitra.
2022. “Food insufficiency and Twitter emotions during a pandemic.” Applied Economic
Perspectives and Policy 1–22. https://doi.org/10.1002/aepp.13258

22 GOETZ ET AL.

https://doi.org/10.22004/ag.econ.313316
http://arxiv.org/abs/1707.08114
http://arxiv.org/abs/1707.08114
https://doi.org/10.1002/aepp.13214
https://doi.org/10.1002/aepp.13214
https://doi.org/10.1002/aepp.13258

	Food insufficiency and Twitter emotions during a pandemic
	METHODS: AUTOMATED TWEET EXTRACTION AND SENTIMENT/EMOTION TAGGING
	Extraction of tweets related to food insufficiency in U.S. states
	Language modeling
	Training
	Sentiment detection
	Emotion detection
	Food insufficiency-related examples
	Testing the model

	DATA DESCRIPTION AND ANALYSIS
	FI from the HPS
	Sentiments and emotions from Twitter
	Correlation analysis results

	SUMMARY AND CONCLUSION
	ACKNOWLEDGMENTS
	Endnotes
	REFERENCES


