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Much of the existing work on action recognition combines simple features with complex classifiers or
models to represent an action. Parameters of such models usually do not have any physical meaning
nor do they provide any qualitative insight relating the action to the actual motion of the body or its
parts. In this paper, we propose a new representation of human actions called sequence of the most infor-
mative joints (SMIJ), which is extremely easy to interpret. At each time instant, we automatically select a
few skeletal joints that are deemed to be the most informative for performing the current action based on
highly interpretable measures such as the mean or variance of joint angle trajectories. We then represent
the action as a sequence of these most informative joints. Experiments on multiple databases show that
the SMIJ representation is discriminative for human action recognition and performs better than several
state-of-the-art algorithms.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Human motion analysis has remained as one of the most impor-
tant areas of research in computer vision. Over the last few dec-
ades, a large number of methods have been proposed for human
motion analysis (see the surveys by Moeslund et al. [1,2] and
Turaga et al. [3] and most recently by Aggarwal and Ryoo [4] for
a comprehensive analysis). In general all methods use a parametric
representation of human motion and develop algorithms for com-
paring and classifying different instances of human activities under
these representations.

One of the most common and intuitive methods for representa-
tion of human motion is a temporal sequence of approximate hu-
man skeletal configurations. The skeletal configurations represent
hierarchically arranged joint kinematics with body segments re-
duced to straight lines. In the past, extracting accurate skeletal
configurations from monocular videos was a difficult and unreli-
able process, especially for arbitrary human poses. Motion capture
systems on the other hand could provide very accurate skeletal
configurations of human actions based on active or passive mark-
ers positioned on the body; however, the data acquisition was lim-
ited to controlled indoor environments. Methods for human
ll rights reserved.
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motion analysis that relied heavily on accurate skeletal data, there-
fore, became less popular over the years as compared to the image
feature-based activity recognition methods. In the latter, spatio-
temporal interest points are extracted from monocular videos
and the recognition is based on learned statistics on large datasets
[5–7]. Recently, with the release of several low-cost and relatively
accurate 3D capturing systems, such as the Microsoft Kinect, real-
time 3D data collection and skeleton extraction have become much
easier and more practical for the applications of natural human
computer interaction, gesture recognition and animation, thus
reviving interest in the skeleton-based action representation.

Existing skeleton-based methods for human action recognition
are primarily focused on modeling the dynamics of either the full
skeleton or a combination of body segments. To represent the
dynamics of normalized 3D positions of joints or joint angle config-
urations, most of the methods use linear dynamical systems (LDS)
or non-linear dynamical systems (NLDS), e.g., in [8–10], or hidden
Markov models (HMM), see, e.g., the earlier work by Yamato et al.
[11] and a review of several others in [12]. Recently Taylor et al.
[13,14] proposed using conditional restricted Boltzman machines
(CRBM) to model the temporal evolution of human actions. While
these methods have been very successful for both human activity
synthesis and recognition, their representation of human motion
is in general not easy to interpret in connection to the physical
and qualitative properties of the human motion. For example, the
parameters obtained from the LDS modeling of the skeletal joint
trajectories will likely describe positions and velocities of the
joints (SMIJ): A new representation for human skeletal action recognition,
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individual joints, which do not directly convey any information
about the changes in the skeletal configuration of the human body
as the action is performed.

When humans perform an action, we can observe that each indi-
vidual performs the same action with a different style, generating
dissimilar joint trajectories; however, all individuals activate the
same set of joints contributing to the overall movement, roughly
in the same order. In our approach we take advantage of this obser-
vation to capture invariances in human skeletal motion for a given
action. Given an action, we propose to identify the most informative
joints in a particular temporal window by finding the relative infor-
mativeness of all the joints in that window. We can quantify the
informativeness of a joint using, for example, the entropy of its joint
angle time series. In the case of a Gaussian random variable, its en-
tropy is proportional to the logarithm of its variance. Therefore,
the joint that has the highest variance of motion as captured by
the change in the joint angle can be defined as the most informative,
assuming the joint angle data are independent and identically dis-
tributed (i.i.d.) samples from a one-dimensional Gaussian. Such a
notion of informativeness is very intuitive and interpretable. During
performance of an action, we can observe that different joints are
activated at different times with various degree. Therefore, the or-
dered sequence of informative joints in a full skeletal motion implic-
itly encodes the temporal dynamics of the motion.

Based on these properties, we recently proposed in [16] the se-
quence of the most informative joints (SMIJ) as a new representation
for human motion based on the temporal ordering of joints that are
deemed to be the most informative for performing an action. In
[16], we briefly compared the performance of the SMIJ representa-
tion to other action representations, based on the histograms of
motion words, as well as the methods that explicitly model the
dynamics of the skeletal motion. In this paper, we provide a more
comprehensive description of the SMIJ representation and other
feature representations and further evaluate their quality using ac-
tion classification as our performance test. In addition, we propose
a different metric for comparison of SMIJ features, based on nor-
malized edit distance [17], which outperforms the normalized
Levenshtein distance, applied in our previous work. Furthermore,
we show that our simple yet highly intuitive and interpretable rep-
resentation performs much better than standard methods for the
task of action recognition from skeletal motion data.
2. Sequence of the most informative joints (SMIJ)

The human body is an articulated system that can be repre-
sented by a hierarchy of joints that are connected with bones,
forming a skeleton. Different joint configurations produce different
skeletal poses and a time series of these poses yields the skeletal
motion. An action can thus simply be described as a collection of
time series of 3D positions (i.e., 3D trajectories) of the joints in
the skeleton hierarchy. This representation, however, lacks impor-
tant properties such as invariance with respect to the choice of the
reference coordinate system and scale of the human.

A better description is obtained by computing the joint angles
between any two connected limbs and using the time series of
joint angles as the skeletal motion data. Let ai denote the joint an-
gle time series of joint i, i.e., ai ¼ fai

tg
t¼T
t¼1 where T is the number of

frames in an action sequence. An action sequence can then be seen
as a collection of such time-series data from different joints, i.e.,
A ¼ ½a1a2 . . . aJ�, where J is the number of joints in the skeleton hier-
archy. Hence, A is the T � J matrix of joint angle time series repre-
senting an action sequence.

Common modeling methods such as LDS or HMM model the
evolution of the time series of joint angles. However, instead of di-
rectly using the original joint angle time-series data A, one can also
Please cite this article in press as: F. Ofli et al., Sequence of the most informative
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extract various types of features from A that in general reduce the
size of data yet preserve the information that is discriminative of
each action. For the sake of generality, we denote this operation
with the mapping function O in the remainder of this paper unless
an explicit specification is necessary. Here OðaÞ : Rjaj ! R is a func-
tion that maps a time series of scalar values to a single scalar value.
Furthermore, one can extract such features either across the entire
action sequence (i.e., global features) or across smaller segments of
the time-series data (i.e., local features). The former case describes
an action sequence with its global statistics, whereas the latter
case emphasizes more the local temporal statistics of an action se-
quence. Examples include the mean or variance of joint angle time
series, or the maximum angular velocity of each joint as observed
over the entire action sequence or inside a small temporal window.

2.1. Motivation of the proposed representation

In this paper we approach the action recognition with the fol-
lowing hypothesis: Different actions require humans to engage dif-
ferent joints of the skeleton at different intensity (energy) levels at
different times. Hence, the ordering of joints based on their level of
engagement across time should reveal significant information
about the underlying dynamics, i.e., the invariant temporal struc-
ture of the action itself.

In order to visualize this phenomenon, let us consider the la-
beled joint angle configuration shown in Fig. 1(a), and perform a
simple analysis on the Berkeley multimodal human action data-
base (Berkeley MHAD), (see Section 4.1 for details about the data-
sets). The analysis is based on the following steps: (i) partition the
joint angle time series of an action sequence into a number of con-
gruent temporal segments, (ii) compute the variance of the joint
angle time series of each joint over each temporal segment (note
that the mapping function O is defined to be the variance operator
in this particular case), (iii) rank-order the joints within each seg-
ment based on their variance in descending order, (iv) repeat the
first three steps to get the orderings of joints for all the action se-
quences in the dataset. Below we investigate the resulting set of
joint orderings for different actions in the Berkeley MHAD.

Fig. 1(b) shows the distribution of the most informative, i.e., the
top-ranking, joint for different actions across all repetitions from
all subjects in the Berkeley MHAD. Specifically, each entry in the
figure shows the percentage of the time that the trajectory of a gi-
ven joint within a segment has the highest variance. Notice that
simple actions, such as punch and wave one, engage only a small
number of joints, while more complex actions, such as sit-stand,
engage several joints in different parts of the body. Nevertheless,
the set of the most informative joints are different for different ac-
tions. Joint 10 (RElbow) is the most informative joint 47% of the
time, followed by joint 9 (RArm) 35% of the time in the wave one
action. Both joints 10 (RElbow) and 13 (LElbow) are the most infor-
mative joints more than 40% of the time in the punch action. On the
other hand, almost half of the joints appear as the most informa-
tive at some point in the actions sit-stand, sit down and stand up;
however, the differences across the sets of engaged joints in each
of these three actions are still noticeable. For instance, joint 19
(LKnee) is engaged more in the sit-stand action than in the sit down
and stand up actions.

Fig. 2 shows the stacked histogram distributions of the 6 most
informative joints for four different actions taken from the Berke-
ley MHAD. Even though the overall set of the most informative
joints looks similar for the actions jump and jumping jacks, there
are significant differences particularly in the distribution of joints
at different rankings for different actions. Specifically, joints 15
(RKnee) and 19 (LKnee) appear more than 60% of the time as either
the 1st- or 2nd-ranking joint for the jump action whereas this ratio
is between 40% and 50% for the jumping jacks action. Furthermore,
joints (SMIJ): A new representation for human skeletal action recognition,
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Fig. 1. (a) The structure of the skeleton used in the Berkeley MHAD and the corresponding set of 21 joint angles. (b) Distribution of the most informative joint for different
actions in the Berkeley MHAD. Each entry corresponds to the percentage of the time that a given joint is deemed to be the most informative for a given action (darker means
higher percentage). Some actions, such as punch and wave one, are represented only with a few number of joints whereas other actions, such as sit-stand, sit down and stand
up, require many more joints.
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Fig. 2. Stacked histogram distribution of the most informative, i.e., the top-ranking, 6 joints for four actions selected from the Berkeley MHAD.
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joints 10 (RElbow) and 13 (LElbow) tend to rank in the top three at
least 30% of the time for the jump action whereas joints 9 (RArm)
and 12 (LArm) tend to rank in the top three for the jumping jacks
action. On the contrary, for the actions sit down and stand up, both
the overall set of the most informative joints and the distribution
of joints at different rankings are very similar. We further examine
the temporal orderings of the most informative joints to demon-
strate how the proposed representation can distinguish between
actions with similar histogram distributions.
Please cite this article in press as: F. Ofli et al., Sequence of the most informative
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Fig. 3 shows the temporal orderings of the most informative
joint across the first seven subjects in the Berkeley MHAD for the
actions sit down and stand up. The joints are color-coded according
to the color bar displayed on the right side, while similar color
codes are used for symmetric joints to improve the clarity of the
visualization. Furthermore, the action recordings from different
subjects are sorted with respect to their lengths to better empha-
size the similarities between the temporal orderings of the most
informative joint for different action recordings. The plots suggest
joints (SMIJ): A new representation for human skeletal action recognition,
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Fig. 3. Temporal orderings of the most informative joint for the actions sit down and stand up across the first seven subjects in the Berkeley MHAD. Each row of a plot
represents the sequence of the most informative joint extracted from the first action recording of the corresponding subject.
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that even though the overall set of the most informative joints look
very similar for the actions sit down and stand up, the temporal
ordering of the most informative joint can be used to distinguish
these two actions successfully. Specifically, the orange-colored
joints (i.e., joints 15 (RKnee) and 19 (LKnee)) are engaged the most
at the beginning of the sit down action as opposed to being engaged
the most towards the end of the stand up action. Conversely, the
blue/green-colored joints (i.e., joints 9 (RArm), 10 (RElbow), 12
(LArm) and 13 (LElbow)) are engaged the most interchangeably at
the end of the sit down action as opposed to being engaged the
most at the beginning of the stand up action. The observed tempo-
ral ordering corresponds to the nature of the action as the subjects
used their arms for support when first getting out of the chair and
conversely when sitting down.

In summary, our initial analysis suggests that different sets of
joints, as well as their temporal ordering, reveal discriminative
information about the underlying structure of the action. This is
precisely the main motive to propose sequences of the top N
most informative joints as a new feature representation for hu-
man skeletal action recognition. Hence, the new feature represen-
tation, which we refer to as sequence of the most informative joints
(SMIJ), has two main components: (i) the set of the most infor-
mative joints in each time segment, and (ii) the temporal order-
ing of the set of the most informative joints over all of the time
segments.
2.2. Segmentation

To extract the SMIJ representation from the joint angle time-
series data, we first need to partition the action sequence into a
number of, say Ns, temporal segments. Let ai

k ¼ ai
k

� �
k¼tk

s ;...;t
k
e

be a
segment of ai where tk

s and tk
e denote the start and the end frames

for the segment k, respectively. Then, the joint angle time-series
data of joint i; ai, can be written as a collection of temporal motion
segments, ai ¼ ai

k

� �
k¼1;...;Ns

.
In general the length of the motion segments should be such

that significant information about the underlying dynamics of
the movement is contained within the segment. We hypothesize
that the size and the type of partitioning will influence the discrim-
inative properties of the proposed SMIJ representation since the
atomic motion units will be captured differently depending on
the size and the number of the segments. The temporal segmenta-
tion of human motion into such atomic motion units is, however,
still an open research problem. Some of the top-down approaches
in this domain rely on creating models of atomic motion units a
priori from expert knowledge and training data [18,19]. Some of
the bottom-up segmentation techniques, on the other hand, utilize
Please cite this article in press as: F. Ofli et al., Sequence of the most informative
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the principle component analysis and data compression theory
[20–22]. The problem of temporal segmentation of human activi-
ties is, however, beyond the scope of this study. In this paper, we
thus examine two different elementary methods to partition the
action sequences:

(a) Segmentation with Fixed Number of Segments. In this
approach, we divide the time-series data associated with one
sample action sequence into a fixed number of congruent seg-
ments of variable size. The resulting feature representation thus
have the same size for all action sequences. However, this
method yields shorter temporal segments for shorter action
sequences and longer temporal segments for longer action
sequences, which can be interpreted as a temporal normaliza-
tion of the actions. Note, that this is the same segmentation
approach used in our previous work on SMIJ representation
[16].
(b) Segmentation with Fixed Temporal Window. In the second
approach, we divide the time-series data associated with one
sample action sequence into a variable number of congruent
segments of a given fixed size. This alternative approach is
novel for the SMIJ representation and leads to uniform temporal
analysis of all action sequences. Unlike the first approach,
where the feature representations are of the same length for
all the actions, this approach yields different number of seg-
ments for different action sequences. Hence, the resulting fea-
ture representation has different size for different action
sequences.

The fixed temporal window based segmentation is prevalent in
several domains such as speech/audio processing, or signal pro-
cessing in general, since it is more intuitive and generalizable.
We likewise hypothesize that the fixed temporal window approach
will yield more discriminative SMIJ representations of different ac-
tions than the fixed number of segments approach. We analyze the
results of these two partitioning approaches in Section 4. Examina-
tion of more advanced temporal segmentation methods remains to
be our future work.

2.3. Measure of information

Once we partition the action sequence into congruent temporal
segments, we apply the mapping function O to each segment and
write the action sequence as a collection of features,
F ¼ fkf gk¼1;...;Ns

, where

fk ¼ O a1
k

� �
O a2

k

� �
� � �O aJ

k

� �h i
: ð1Þ
joints (SMIJ): A new representation for human skeletal action recognition,
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The feature function,Oðai
kÞ, provides a measure of informativeness of

the joint i in the temporal segment k. In information theory, one mea-
sure of information of a signal is the entropy [23], which is defined as

h Xð Þ ¼ �
Z
X

f xð Þ log f xð Þdx; ð2Þ

where X is a continuous random variable with probability density
function f whose support is a set X . For a Gaussian distribution with
variance r2, the entropy can be calculated as

h Xð Þ ¼ 1
2

log 2pr2 þ 1
� �

: ð3Þ

Therefore, the entropy of a Gaussian random variable is propor-
tional to the logarithm of its variance [15]. Assuming that the joint
angle time-series data ai are i.i.d. samples from a one-dimensional
Gaussian distribution, we can measure the informativeness of ai

in each temporal segment by computing the corresponding vari-
ance in each segment. Based on this assumption, we choose the
mapping function O to be the variance operator in the remainder
of this paper. A more sophisticated information theoretic measure
of informativeness that also considers signal noise remains to be a
future work.

2.4. Ordering

After the temporal segmentation and mapping of each joint-an-
gle time series, we rank-order all the joints in fk within each tem-
poral segment k based on their informativeness, i.e., Oðai

kÞ, and
define SMIJ features as

S ¼ sknð Þk¼1;...;Ns ;n¼1;...;N;

skn ¼ idof sort fkð Þ;nð Þ;
ð4Þ

where the sort operator sorts the joints based on their local O score
in descending order, the idof �; nð Þ operator returns the id (or equiv-
alently, the label) of a joint that ranks nth in the joint ordering, and
N specifies the number of top-ranking joints included in the repre-
sentation, resulting in a Ns � N-dimensional feature descriptor. In
other words, the SMIJ features represent an action sequence by
encoding the set of N most informative joints at a specific time in-
stant (by rank-ordering and keeping the top-ranking N joints) as
well as the temporal evolution of the set of the most informative
joints throughout the action sequence (by preserving the temporal
order of the top-ranking N joints). Fig. 4 shows the most informative
6 joints at the key frames of two actions selected from the HDM05
dataset (see Section 4.1 for details about the datasets).

We acknowledge that using the proposed representation of an
action as a sequence of rank-ordered joints significantly reduces
the amount of information contained in the original time series
data. We argue, however, that the remaining information is dis-
criminative enough to distinguish different actions. In our experi-
ments, we show that such an extreme abstraction in the feature
representation yields satisfactory results for action recognition. A
more detailed feature representation will become necessary when
the set of the most informative joints and their orderings are very
similar for two different actions. In such case, we can enrich the
representation by retaining not only the ranking of the most infor-
mative joints, but also some information about the motion of the
most informative joint, such as the direction of the motion of the
most informative joint, within each temporal segment. We leave
this avenue as a future research direction.

2.5. Metrics for comparing SMIJ

Each SMIJ is defined over a fixed alphabet – the joint labels.
Therefore, comparison of the SMIJ features from two different se-
Please cite this article in press as: F. Ofli et al., Sequence of the most informative
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quences Si and Sj is equivalent to comparison of strings. The dis-
tance metric as a measure of similarity between two strings with
finite sequence of symbols is often defined using edit-distance
functions, which consist of counting the minimum number of edit
operations needed to transform one string into the other. The edit
operations include insertion, deletion, substitution of a single char-
acter, or transposition of two adjacent characters. These four edit
operations were first introduced by Damerau [24] who applied
them to automatic detection and correction of spelling errors. Sub-
sequent to Damerau’s work, Levenshtein introduced in [25] the
corresponding edit distance to deal with multiple edit operations,
such as deletion, insertion, and reversals, but excluded transposi-
tion. His distance metric is known as the Levenshtein distance.
Wagner and Fischer first proposed a dynamic programming algo-
rithm for calculating the Levenshtein distance in [26] and then ex-
tended the set of allowable edit operations to include transposition
of two adjacent characters in [27].

Interestingly, none of the aforementioned algorithms consid-
ered normalization of the distance metric that would appropriately
rate the weight of the (edit) errors with respect to the length of the
sequences (strings) that are compared. Even though the normaliza-
tion may not be crucial for comparing strings of the same length, it
becomes critical for comparing strings of different lengths, as
pointed out by Marzal and Vidal in [17]. In their seminal work,
Marzal and Vidal proposed an algorithm called the normalized edit
distance (NED) based on finding the minimum of W Pð Þ=L Pð Þ (not
only the minimum of W Pð Þ), where P is an editing path between
Si and Sj;W Pð Þ is the sum of the weights of the elementary edit
operations of P, and L Pð Þ is the number of these operations (length
of P). They also emphasized that this minimization cannot be car-
ried out by first minimizing W Pð Þ and then normalizing it by the
length of the obtained path L Pð Þ, which they refer to as post-
normalization.

In our original work on the activity recognition using SMIJ fea-
tures [16], we used the post-normalized Levenshtein distance to
compare the sequences of features. All the action sequences were
partitioned into fixed number of segments, generating feature vec-
tors of the same length. The post-normalized Levenshtein distance
was thus able to properly describe the level of similarity between
the sequences. In this paper, we extend the temporal segmentation
by including segmentation with the fixed temporal window which
generates sets of sequences of various lengths. The Levenshtein
distance does not properly account for the length variations be-
tween the sequences since it only seeks to find the minimum num-
ber of edit operations, in other words, minimizes W Pð Þ only.
Instead, we apply a more sophisticated distance metric, i.e., the
normalized edit distance [17], which considers variable lengths
of feature vectors and a proper normalization of the distance
metric.

Using the normalized edit distance, we define the distance be-
tween two different SMIJ representations Si and Sj as follows:

DS Si; Sj
� �

¼
XN

n¼1

NEDðsi
�;n; s

j
�;nÞ; ð5Þ

where s�;n refers to the nth column of S, i.e., the sequence of nth-
ranking joints, and N is the number of the most informative joints
included in the SMIJ representation.

3. Alternative feature representations

In this section, we briefly describe three alternative feature rep-
resentations against which we compare the results of the proposed
SMIJ representation. We consider two standard methods, linear
dynamical system parameters (LDSP) with a linear system identifi-
cation approach and histogram of motion words (HMW) with a
joints (SMIJ): A new representation for human skeletal action recognition,
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bag-of-words model. In addition we compare our results with the
histogram of the most informative joints (HMIJ) which was also
proposed originally in [16] as an alternative to SMIJ. We believe
that the three alternative feature representations, i.e., HMIJ,
HMW and LDSP, adopted from a wide range of popular approaches,
allow us to demonstrate the power of the proposed SMIJ features in
terms of discriminability and interpretability for human action
recognition.
3.1. Histogram of motion words (HMW)

Histogram of motion words is based on the popular bag-
of-words method [28] for visual categorization. In this approach,
we first cluster the set of all fks for a given action sequence into
K clusters (i.e., motion words) using K-means or K-medoids. Next,
we count for each sequence the number of motion words by
assigning each fk to its closest motion word. After l1-normalization,
we obtain the histogram-of-motion words (HMW) representation,
which captures the overall distribution of motion words in the
form of a histogram for each sequence. Since the HMW ignores
temporal relations between smaller action units, a sequence with
scrambled fk will yield the same HMW representation as the origi-
nal sequence.

As the distance metric for comparing HMW features, we use v2

distance defined as follows:

Dv2 Hi;Hj
� �

¼ 1
2

XK

k¼1

hi
k � hj

k

� �2

hi
k þ hj

k

� � ; ð6Þ

where Hi ¼ ðhi
1; . . . ;hi

KÞ and Hj ¼ ðhj
1; . . . ; hj

KÞ are two l1-normalized
histograms and K is the number of bins in the histograms, or equiv-
alently, the number of clusters that has to be decided a priori. For all
the experiments we chose K ¼ 20 (which will be discussed further
in Section 4.2). Note, that since the final clustering result depends
on the initial condition, the final recognition rate can change based
on the motion words computed during the clustering stage. We
therefore perform 20 runs for each clustering experiments and
compute the corresponding HMW representations for each action
sequence. We provide the mean and standard deviation of the clas-
sification rates achieved over these 20 runs using methods such as
1-nearest neighbor (1-NN) with v2 distance on histograms and sup-
Please cite this article in press as: F. Ofli et al., Sequence of the most informative
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port vector machine (SVM) with a Gaussian kernel using v2 distance
on histograms.
3.2. Linear dynamical system parameters (LDSP)

As mentioned earlier, one of the most common techniques to
analyze human motion data is based on modeling the motion with
a linear dynamical system over the entire sequence (e.g., see [8,29–
31] for more details) and using the LDS parameters (LDSP) as an
alternative feature representation. A general LDS is defined by
the following set of equations:

yt ¼ lþ Cxt þwt; ð7Þ
xt ¼ Axt�1 þ Bvt; ð8Þ

where yt 2 Rp is the output of the LDS at time t and is linearly re-
lated to the hidden state, xt 2 Rm. Furthermore, xt depends linearly
on only the previous state xt�1. l 2 Rp is the mean output and
vt 2 Rmv is a zero-mean, unit variance i.i.d. Gaussian process that
drives the state process xt . Similarly, wt 2 Rp � N ð0;r2IÞ is a zero
mean uncorrelated output noise process. The joint-angle time-ser-
ies is hence modeled as the output of an LDS and can therefore be
represented by the tuple ðA; C; B;l;r2;x0Þ, where A 2 Rm�m is the
dynamics matrix, C 2 Rp�m is the observation matrix,
B 2 Rm�mv ðmv 6 mÞ is the input-to-state matrix, r2 is the identical
covariance of each output dimension, and x0 is the initial state of
the system.

Given a feature time-series, these parameters can be computed
using system identification for which several methods exist, e.g.,
N4SID [32] and EM [33]. We choose to use the sub-optimal but
very fast method by Doretto et al. [34] to identify the system
parameters for the joint-angle time-series of a given action
sequence.

Once these parameters are identified for each of the action se-
quences, various metrics can be used to define the similarity be-
tween these LDSs. In particular, three major types of metrics are
(i) geometric distances based either on subspace angles between
the observability subspaces of the LDSs [35] or on an alignment dis-
tance between two LDS parameters under a group action [36], (ii)
algebraic metrics such as the Binet-Cauchy kernels [37], and (iii)
information theoretic metrics such as the KL-divergence [38]. We
use the geometric distance known as the Martin distance [35] as
joints (SMIJ): A new representation for human skeletal action recognition,
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the metric between dynamical systems for classification based on
LDSP using methods such as 1-NN and SVM.

The LDSP representation, as opposed to the aforementioned
SMIJ and HMW representations, does not require segmentation
of the joint angle trajectories. Therefore, it captures only the global
temporal information about an action while ignoring the details on
the local levels.

3.3. Histograms of the most informative joints (HMIJ)

Finally, we propose an alternative feature representation, which
is based on a similar idea to SMIJ, but disregards the temporal
information. Instead of stacking the most informative N joints from
all temporal segments into a matrix of symbols, while keeping the
temporal order of the joints intact, we create histograms separately
for the 1st-ranking joints, 2nd-ranking joints, and so on, from all
temporal segments. The histograms are then concatenated as a fea-
ture descriptor, called histograms of the most informative joints
(HMIJ), to represent each action sequence in the following form:

HMIJ ¼ hist idof sort fkð Þ;nð Þf gk¼1;...;Ns

� �� �
n¼1;...;N

: ð9Þ

Here the hist operator creates a J-bin l1-normalized histogram from
the input joint sequence, resulting in JN-dimensional feature
descriptor. Since HMIJ is a histogram-based representation, we
use the v2 distance given in (6) to compute the distance between
HMIJ features for classification based on 1-NN and SVM with a
Gaussian kernel.

It is important to note that the HMIJ feature representation
ignores the temporal order of the most informative N joints, and
hence, it will be useful for evaluating the importance of preserving
the temporal ordering in the feature representation, which is pre-
served by the SMIJ feature representation.

4. Experiments

In this section we compare our proposed feature representation
SMIJ (described in Section 2) against the baseline feature represen-
tations (explained in Section 3) on the datasets outlined in Sec-
tion 4.1 using action recognition as a test, and provide
experimental results in Section 4.2.

4.1. Datasets

We evaluate the performance of each feature representation de-
scribed above on three different human action datasets of 3D skel-
eton data. Two of the datasets were obtained using a high quality
motion capture system, while the third one contains skeleton data
obtained from a single-viewpoint depth sensor. Each dataset has
almost completely distinct set of actions with different frame rates,
different skeleton extraction method, and hence, skeleton data of
various dynamic properties and data fidelity. The goal of including
such diverse input data was to examine how discriminative the
proposed SMIJ method is with respect to the varying properties
of these datasets. The diversity is relevant in the first set of exper-
iments where we aim to evaluate the performance of the feature
representations on a wide range of actions. For the second set of
experiments, where we evaluate the action recognition across
datasets, we select a small subset of actions that are shared be-
tween the first two datasets.

4.1.1. Berkeley multimodal human action database (Berkeley MHAD)
We recently collected a dataset that contains 11 actions per-

formed by 12 subjects using an active optical motion capture sys-
tem (PhaseSpace Inc, San Leandro, CA) [39]. The motion data was
recorded with 43 active LED markers at 480 Hz. For each subject
Please cite this article in press as: F. Ofli et al., Sequence of the most informative
J. Vis. Commun. (2013), http://dx.doi.org/10.1016/j.jvcir.2013.04.007
we collected 5 repetitions of each action, yielding a total of 659 ac-
tion sequences (after excluding one erroneous sequence). We then
extracted the skeleton data by post-processing the 3D optical mo-
tion capture data. The actions lengths vary from 773 to 14,565
frames (corresponding to approximately 1.6–30.3 s). The set of ac-
tions consisted of jump, jumping jacks, bend, punch, wave one hand,
wave two hands, clap, throw, sit down, stand up, and sit down/stand
up.

4.1.2. Motion capture database HDM05
From the popular HDM05 database [40] we arbitrarily selected

16 actions performed by 5 subjects. In this dataset, subjects per-
formed each action with various number of repetitions, resulting
in 393 action sequences in total. The motion capture data, which
was captured with the frequency of 120 Hz, also includes the cor-
responding skeleton data. The duration of the action sequences
ranges from 56 to 901 frames (corresponding to approximately
0.5–7.5 s). The set of actions consisted of deposit floor, elbow to
knee, grab high, hop both legs, jog, kick forward, lie down floor, rotate
both arms backward, sneak, squat, throw basketball, jump, jumping
jacks, throw, sit down, and stand up.

4.1.3. MSR Action3D database
Finally, we also evaluated the action recognition performance

on the MSR Action3D dataset [41] consisting of the skeleton data
obtained from a depth sensor similar to the Microsoft Kinect with
15 Hz. Due to missing or corrupted skeleton data in some of the
available action sequences, we selected a subset of 17 actions per-
formed by 8 subjects, with 3 repetitions of each action. The subset
consisted of 379 action sequences in total, with the duration of the
sequences ranging from 14 to 76 frames (corresponding to approx-
imately 1–5 s). The set of actions included high arm wave, horizon-
tal arm wave, hammer, hand catch, forward punch, high throw, draw
x, draw tick, draw circle, hand clap, two hand wave, side-boxing, for-
ward kick, side kick, jogging, tennis swing, and tennis serve.

4.1.4. Database standardization
Before proceeding with the action recognition experiments on

the aforementioned datasets, we need to consider some important
factors that can potentially influence the recognition results. The
three databases have different acquisition frame rates, which affect
the maximal number of temporal segments that can be extracted
from a sequence. Another important factor to be considered is
the number of repetitions of an action unit in a particular sample.
The Berkeley MHAD database for instance, contains five repetitions
of an action unit in each sample sequence, e.g., the person jumps or
claps five times, whereas in the other two datasets, the subject per-
forms only one repetition of similar action unit.

For the purpose of consistent and objective comparison of the
classification performance, we standardize the datasets with re-
spect to the frame rate and the action unit segmentation. The ac-
tion sequences of the Berkeley MHAD dataset with multiple
repetitions of the same action were split into individual sequences
with only one repetition, thus extending the dataset by several
shorter action sequences. Furthermore, we downsampled the ex-
tended Berkeley MHAD dataset from 480 fps to 120 fps and
upsampled the MSR Action3D dataset from 15 fps to 120 fps to
match the frame rate for all the datasets, using lowpass decimation
and interpolation, respectively.

4.2. Action recognition results

In this section we examine the quality of different feature rep-
resentations by evaluating their classification performance using
well-established methods such as 1-nearest neighbor (1-NN) and
support vector machine (SVM) with the corresponding distance
joints (SMIJ): A new representation for human skeletal action recognition,

http://dx.doi.org/10.1016/j.jvcir.2013.04.007


8 F. Ofli et al. / J. Vis. Commun. Image R. xxx (2013) xxx–xxx
metrics introduced earlier in the respective subsections. For SVM
based classification, we follow one-vs-one classification scheme
and use Gaussian kernel K �; �ð Þ ¼ e�cD2 �;Hð Þ with an appropriate dis-
tance function D �; �ð Þ depending on the feature type listed above.1

As for the SVM hyperparameters, we set the regularization parame-
ter C to 1 and the Gaussian kernel function parameter c to the in-
verse of the mean value of the distances between all training
sequences as suggested in [42]. In order to determine the number
of clusters (K) for the HMW representation, we performed prelimin-
ary classification experiments for different values of K, and observed
that the performance saturates for K > 20. In addition, we aim to
match the dimensions of the histograms in the HMW representation
to the dimensions of the histograms in the HMIJ representation.2

Since the histograms in the HMIJ representation can be 20- to 22-
dimensional,3 we chose K ¼ 20 for the HMW representation.

4.2.1. Action recognition on the same database
In the first set of experiments, we performed action recognition

on each of the aforementioned datasets separately. We used
roughly 60% of the data for training and the remainder for testing.
Specifically, we used 7 subjects (384 action sequences) for training
and 5 subjects (275 action sequences) for testing on the Berkeley
MHAD database, 3 subjects (216 action sequences) for training
and 2 subjects (177 action sequences) for testing on the HDM05
database, and finally, 5 subjects (226 action sequences) for training
and 3 subjects (153 action sequences) for testing on the MSR Ac-
tion3D database.

Fig. 5 shows the classification results for the first three feature
types (i.e., SMIJ, HMIJ and HMW) on three different datasets for a
range of values for the fixed number of segments approach. Specifi-
cally, the plots in different columns correspond to different feature
types, i.e., SMIJ, HMIJ and HMW, from left to right, respectively. The
plots in different rows show recognition results from different
datasets, i.e., Berkeley MHAD, HDM05 and MSR Action3D, from
top to bottom, respectively. In all plots, the vertical axis represents
the classification performance and the horizontal axis represents
the number of segments, ranging from 5 to 50 with a step size of
5. Different colors in the SMIJ and HMIJ plots represent different
number of the most informative joints (N) included in the feature
representation. On the other hand, different colors in the HMW
plots represent different clustering methods (i.e., K-means and K-
medoids) used to obtain final feature representation. The solid
lines in the plots show SVM-based classification results whereas
the dotted lines show NN-based classification results. The HMW
plots show the mean and standard deviation of the classification
rates achieved over 20 runs as explained in Section 3.1. Arranged
identically to Fig. 5, Fig. 6 shows the classification results for a
range of different window sizes for the fixed temporal window
approach.

We observe in Fig. 5 that as we increase the number of seg-
ments in the fixed number of segments approach, the classification
performance first improves and then saturates when the number
of segments is sufficiently large, especially for Berkeley MHAD
and HDM05 datasets. On the contrary, we see the opposite trend
in Fig. 6. That is, the classification performance in general tends
to decrease as we increase the temporal window size in the fixed
temporal window approach. These two observations are consistent
since increasing the number of segments corresponds to decreas-
1 For the sake of exactness, we note that we do not compute the square of the
distance function Dv2 ðHi;HjÞwhen we compute the corresponding kernel since the v2

distance function already returns squared-distances by definition.
2 Recall from Section 3.3 that the dimension of the histograms in the HMIJ

representation depends on the number of joint angles in the associated skeleton
structure.

3 There are 20;21 and 22 joint angles in the associated skeleton structures of the
MSR Action3D, Berkeley MHAD and HDM05 databases, respectively.
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ing the segment size, and vice versa. Nevertheless, determining a
proper window size is important. A very large window size results
in poorer time resolution that yields over-smoothed statistical
information about the underlying time-series data whereas a really
short window size results in unreliable (i.e., noisy) statistical infor-
mation that degrades the quality of the representation. Therefore, a
window size that matches (or is reasonably proportional to) the
duration of atomic action units under consideration should be
sought for the best performance of the feature representation.
For the set of databases we examine in this paper, our experimen-
tal results suggest that a window size of 40 or 50 ms in general
yields the optimal performance for all segmentation based feature
representations, i.e., SMIJ, HMIJ and HMW, (which is further dis-
cussed in the remainder of this section).

Next, we can observe in Figs. 5 and 6 that the recognition results
improve when using more than the single most informative joint
(N > 1). The blue lines (both solid and dotted) in the SMIJ and HMIJ
plots indicate lower classification rates for N ¼ 1 with respect to
the other different colored lines which represent the classification
results for N > 1. Another observation common to the plots in
Figs. 5 and 6 is that SVM-based classification results (solid lines)
are in general better than the NN-based classification results (dot-
ted lines) in all plots. Note also that the overall performance of
HMIJ is usually worse than that of SMIJ. Such performance is ex-
pected since HMIJ does not capture the temporal ordering of the
sequence of the ordered joints and therefore loses discriminability.
For HMW, we see that classification results based on K-medoids
clustering outperforms those based on K-means clustering.

Table 1(a) summarizes the best classification performances at-
tained by different feature types on different datasets using differ-
ent classification methods, all extracted from Fig. 5. Similarly,
Table 1(b) shows the best classification performances extracted
from Fig. 6. Note that the LDSP results are identical in both tables
since LDSP features do not depend on partitioning of the skeleton
data.4 The pair of numbers in parenthesis noted together with the
classification rates for SMIJ and HMIJ indicate the number of the
most informative joints (N) and the number of segments (Ns),
respectively, at which the corresponding classification results are
achieved. Similarly, the number in parenthesis provided together
with the classification rate for HMW indicate the number of seg-
ments at which the corresponding classification result is achieved.
The best classification performance is obtained for different values
of N for different number of segments (or for different length tempo-
ral windows) for different datasets, as shown in Tables 1(a) and 1(b).
However, the best classification rates are achieved mostly when
using 50 segments for the fixed number of segments approach or
40-ms windows for the fixed temporal window approach. This obser-
vation is also in accordance with our previous discussion about
determining the temporal window size. On the other hand, there is
a risk of over-fitting for the SMIJ representation since the number
of classification parameters increases as N (or, the number of seg-
ments Ns) increases, while the amount of training data remains the
same.

In general, the best classification results are obtained by the
SMIJ representation for Berkeley MHAD and HDM05 datasets and
by the HMIJ representation for the MSR Action3D dataset for both
of the aforementioned segmentation methods. The SMIJ features
perform worse than the other reference features in the MSR Ac-
tion3D dataset due to its low frame rate at the capture time and
more noisy skeleton data. More importantly, the classification re-
sults obtained by the fixed temporal window approach are in gen-
eral better than the ones obtained by the fixed number of
4 Recall from Section 3 that they are, on the contrary, obtained by LDS modeling of
the entire joint angle time-series data as a whole.

joints (SMIJ): A new representation for human skeletal action recognition,

http://dx.doi.org/10.1016/j.jvcir.2013.04.007


FIXED NUMBER OF SEGMENTS APPROACH
Feature Representations

St
an

da
rd

iz
ed

D
at

as
et

s

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100
SMIJ − Berkeley MHAD: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Number of Segments

1 2 3 4 5 6
5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

60

70

80

90

100
HMIJ − Berkeley MHAD: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Number of Segments

1 2 3 4 5 6
5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

60

70

80

90

100
HMW − Berkeley MHAD: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Number of Segments

K−means K−medoids

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100
SMIJ − HDM05: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Number of Segments

1 2 3 4 5 6
5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

60

70

80

90

100
HMIJ − HDM05: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Number of Segments

1 2 3 4 5 6
5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

60

70

80

90

100
HMW − HDM05: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Number of Segments

K−means K−medoids

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100
SMIJ − MSR Action3D: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Number of Segments

1 2 3 4 5 6

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100
HMIJ − MSR Action3D: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Number of Segments

1 2 3 4 5 6

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100
HMW − MSR Action3D: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Number of Segments

K−means K−medoids

Fig. 5. Classification results for the fixed number of segments approach for data segmentation. The plots in different columns correspond to different feature representations,
i.e., SMIJ, HMIJ and HMW, from left to right, respectively. The plots in different rows are based on different datasets, i.e., Berkeley MHAD, HDM05 and MSR Action3D, from top
to bottom, respectively. In all plots, the vertical axis is classification performance and the horizontal axis is the number of segments, ranging from 5 to 50 with a step size of 5.
For the SMIJ and HMIJ plots, different colors represent different number of the most informative joints (N) included in the representation. For the HMW plots, different colors
represent different clustering methods (i.e., K-means and K-medoids). For all plots, the solid lines demonstrate the SVM-based classification results whereas the dotted lines
demonstrate the NN-based classification results. Note that the HMW plots show the mean and standard deviation of the classification rates achieved over 20 runs as
explained in Section 3.1.
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segments approach. This observation confirms our hypothesis sta-
ted in Section 2.2 and renders the SMIJ representation based on
the fixed temporal window segmentation method more flexible
and easily applicable in practice.

There are still two critical factors that remain to be addressed
among different databases in the future. One of the factors is the
properties of the underlying acquisition systems used to collect
the action data. Specifically, the Berkeley MHAD and HDM05 dat-
abases are obtained using accurate, high-frame rate motion cap-
ture systems from which it is possible to extract clean and
smooth skeleton data. On the contrary, the MSR Action3D database
is obtained by an early version of the Microsoft Kinect device, and
therefore, the skeleton data extracted from the depth data is not as
accurate or smooth as the skeleton data obtained from a motion
capture system, and has low frame rate. Thus, the classification
Please cite this article in press as: F. Ofli et al., Sequence of the most informative
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performance of any feature representation suffers from high noise
existing in the skeleton data.

The other critical factor that remains to be addressed among
different databases is the set of actions they contain, which even-
tually impacts the classification performance. In order to further
investigate the reasons behind the poor performance of the SMIJ
feature representation on the MSR Action3D dataset in addition
to the noise effects, we examine the confusion matrix of the
SVM-based classification which yielded the best performance as
33.33% using the SMIJ features on the standardized MSR Ac-
tion3D dataset (with N ¼ 6 and 200-ms window), presented in
Table 1(b). The confusion matrix in Table 2 shows 0% recognition
rate for 8 of the actions, out of 17, almost all of which are based
on a basic single arm motion such as high arm wave, horizontal
arm wave, forward punch, tennis swing, and such. The most
joints (SMIJ): A new representation for human skeletal action recognition,

http://dx.doi.org/10.1016/j.jvcir.2013.04.007


FIXED TEMPORAL WINDOW APPROACH

Feature Representations

St
an

da
rd

iz
ed

D
at

as
et

s

40 50 67 100 167 200 250 3330

10

20

30

40

50

60

70

80

90

100
SMIJ − Berkeley MHAD: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Segment Size (ms)

1 2 3 4 5 6
40 50 67 100 167 200 250 3330

10

20

30

40

50

60

70

80

90

100
HMIJ − Berkeley MHAD: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Segment Size (ms)

1 2 3 4 5 6
40 50 67 100 167 200 250 3330

10

20

30

40

50

60

70

80

90

100
HMW − Berkeley MHAD: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Segment Size (ms)

k−means k−medoids

40 50 67 100 167 200 250 3330

10

20

30

40

50

60

70

80

90

100
SMIJ − HDM05: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Segment Size (ms)

1 2 3 4 5 6
40 50 67 100 167 200 250 3330

10

20

30

40

50

60

70

80

90

100
HMIJ − HDM05: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Segment Size (ms)

1 2 3 4 5 6
40 50 67 100 167 200 250 3330

10

20

30

40

50

60

70

80

90

100
HMW − HDM05: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Segment Size (ms)

k−means k−medoids

40 50 67 100 167 200 250 3330

10

20

30

40

50

60

70

80

90

100
SMIJ − MSR Action3D: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Segment Size (ms)

1 2 3 4 5 6
40 50 67 100 167 200 250 3330

10

20

30

40

50

60

70

80

90

100
HMIJ − MSR Action3D: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Segment Size (ms)

1 2 3 4 5 6
40 50 67 100 167 200 250 3330

10

20

30

40

50

60

70

80

90

100
HMW − MSR Action3D: SVM (solid) − KNN (dashed)

C
la

ss
ifi

ca
tio

n 
Pe

rfo
rm

an
ce

Segment Size (ms)

k−means k−medoids

Fig. 6. Classification results for the fixed temporal window approach for data segmentation. The organization of the figure is the same as Fig. 5, except that the horizontal axis
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informative joints in all of these actions are the elbow and the
shoulder of the corresponding arm. The proposed feature repre-
sentation SMIJ is however a coarse representation of the action
based on simple measures calculated from a set of spherical joint
angles extracted from the skeleton structure. For instance, the
SMIJ representation of waving your arm up in the air will be very
similar to the SMIJ representation of swinging your arm along
your body. Due to this reason, the first seven actions in the
MSR Action3D dataset are classified as one of the more dominant
actions such as draw tick or draw circle. If we exclude the 0% clas-
sification rates when we compute the overall classification per-
formance of the SMIJ features, we see that the average
classification rate is actually around 63%, which is almost double
the initial classification rate.

For the sake of completeness, we also include the confusion
matrices of the SVM-based classification which yielded the best
performance using the SMIJ features for the standardized Berkeley
MHAD database as 92.58% (with N ¼ 6 and 40-ms temporal win-
dow), and for the HDM05 database as 89.27% (with N ¼ 2 and
40-ms temporal window), in Tables 3 and 4, respectively. For the
Please cite this article in press as: F. Ofli et al., Sequence of the most informative
J. Vis. Commun. (2013), http://dx.doi.org/10.1016/j.jvcir.2013.04.007
HDM05 database, the actions grab high, hop both legs, throw basket-
ball and throw are the least distinguishable actions for the SMIJ fea-
tures since the set of the most informative joints and the order of
their activations along time are roughly the same. Similarly, for the
Berkeley MHAD database, the most similar actions with respect to
the SMIJ features are the punch, wave two hands and throw actions
because these three actions depend on the motion of the two arms.

4.2.2. Action recognition across databases
In our second set of experiments, we tested the performance of

the aforementioned feature representations in a cross-database
recognition scenario, where a classifier is trained on one dataset
and tested on another. Cross-database validation represents a chal-
lenging task that requires examining generalization of the pro-
posed feature representations across different conditions of the
data acquisition. Cross-database experimentation is often ignored
by the community due to several open research questions. Re-
cently, Torralba and Efros analyzed in [43] several examples of
popular object recognition datasets and showed that training on
specific data collections creates biased results which limit the per-
joints (SMIJ): A new representation for human skeletal action recognition,

http://dx.doi.org/10.1016/j.jvcir.2013.04.007


Table 1
The best action classification results for different feature representations obtained by
different data segmentation approaches for the standardized datasets. The pair of
numbers in parenthesis for SMIJ and HMIJ indicate the number of the most
informative joints and the number of segments for the fixed number of segments
approach, respectively, whereas they indicate the number of the most informative
joints and the window size for the fixed temporal window approach, respectively.
Similarly, the numbers in parenthesis for HMW indicate the number of segments for
the fixed number of segments approach and the window size for the fixed temporal
window approach. Numbers in bold highlight the maximum classification rates
achieved in each column of the tables.

Berkeley MHAD HDM05 MSR Action3D

1-NN SVM 1-NN SVM 1-NN SVM

(a) Fixed number of segments approach
SMIJ 93.10 95.37 85.88 81.92 30.72 33.99

(4/50) (6/35) (4/50) (2/45) (3/40) (2/15)
HMIJ 81.57 82.57 76.27 75.71 35.29 37.91

(3/50) (6/50) (5/50) (4/35) (2/30) (2/45)
HMW 75.82 83.11 74.60 81.10 22.09 25.00

(50) (50) (50) (45) (5) (5)
LDSP 84.86 92.79 67.80 70.62 28.76 33.33

(b) Fixed temporal window approach
SMIJ 94.54 92.58 91.53 89.27 32.68 33.33

(4/40) (6/40) (4/40) (2/40) (3/40) (6/200)
HMIJ 80.33 88.77 73.45 78.53 35.95 41.18

(4/200) (5/50) (4/40) (6/40) (3/67) (2/40)
HMW 77.66 84.23 77.37 79.32 22.32 27.65

(40) (40) (67) (50) (250) (250)
LDSP 84.86 92.79 67.80 70.62 28.76 33.33
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formance of the object detection algorithms developed and evalu-
ated against such datasets. Their cross-dataset object recognition
experiments showed that many of the proposed algorithms do
not generalize beyond the given dataset that they were initially
demonstrated on. By including cross-database evaluation/experi-
ments, we aim to show that the proposed SMIJ representation in-
deed captures the invariances in the human skeletal motion, and
therefore, shows more resilience to the ‘‘dataset bias’’ with better
cross-dataset generalization characteristics among other feature
representations.

To pursue this task, we first determined a set of actions that are
common in two of the three datasets we examined in this paper,
namely the Berkeley MHAD and HDM05 datasets. We found five
actions that were performed similarly: jump, jumping jacks, throw,
sit down, and stand up. To accommodate for the differences in the
skeleton structure between the two datasets, we determined a
set of 16 joints that are common to both, as shown in Fig. 7.

The plots in the top row of Fig. 8 highlight the most informative 3
joints along the key frames of the sit down action taken from the
Berkeley MHAD (left) and HDM05 (right). More detailed examina-
tion reveals that, except for the preparation phase at the beginning
of the action, the most informative 3 joints between the two datasets
match most of the time. Specifically, as the subject gets support from
his arms to keep his balance before starting the action, the arm and
elbow joints become the most informative. Then, the subject starts
the sitting action by bending his knees and leaning backward to-
wards the chair, rendering the knee joints the most informative. Fi-
nally, the subject brings his body into a balance position by
moving his head backwards and putting his arms on his lap, making
the neck as well as the arm and elbow joints the most informative.

The plots in the bottom row of Fig. 8 show the stacked histo-
gram distributions of the most informative 3 joints for the same
action. Despite some subtle differences, the distribution of the
most informative 3 joints for the sit down action in both datasets
show strong similarities. Specifically, joints 6 (RElbow), 8 (LElbow)
rank around 40% of the time in the top three for both datasets. Sim-
ilarly, joints 3 (Neck), 5 (RArm), 7 (LArm), 10 (RKnee) and 14 (LKnee)
appear at least 20% of the time in the top three. Even though some
of these joints reach the level of occurrence as high as 30% for the
Please cite this article in press as: F. Ofli et al., Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition,
J. Vis. Commun. (2013), http://dx.doi.org/10.1016/j.jvcir.2013.04.007
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Table 3
Confusion matrix for SVM classification of the Berkeley MHAD when N ¼ 6 and the fixed temporal window length is 40 ms.

Actions jump jumping jacks bend punch wave one hand wave two hands clapping throw sit down stand up sit down/stand up

1 99.23 0.77
2 100.00
3 100.00
4 81.60 1.60 16.80
5 10.40 3.20 84.80 1.60
6 0.80 80.80 18.40
7 100.00
8 4.00 96.00
9 100.00
10 8.00 92.00
11 4.00 4.00 92.00

1 2 3 4 5 6 7 8 9 10 11

Table 4
Confusion matrix for SVM classification of the HDM05 when N ¼ 2 and the fixed temporal window length is 40 ms.

Actions deposit
floor

elbow
to
knee

grab
high

hop
both
legs

jog kick
forward

lie
down
floor

rotate both
arms
backward

sneak squat throw
basketball

jump jumping
jacks

throw sit
down

stand
up

1 75.00 25.00
2 100.00
3 100.00
4 16.67 33.33 50.00
5 100.00
6 100.00
7 10.00 80.00 10.00
8 100.00
9 100.00
10 100.00
11 50.00 50.00
12 100.00
13 100.00
14 16.67 66.67 16.67
15 20.00 80.00
16 10.00 90.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 7. The set of joint angles that are common in skeletal structures of both
Berkeley MHAD and HDM05 databases are shown on the skeletal figure in the
middle.
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Berkeley MHAD dataset, they are somewhat suppressed in the
HDM05 dataset. There are also some interesting differences be-
tween these two distribution plots. For example, joint 4 (Head) al-
most never appears in the top three ranking in the HDM05 dataset
whereas it appears around 20% of the time in the top three in the
Berkeley MHAD dataset. On the other hand, joints 12 (RFoot) and
16 (LFoot) almost never appear in the top three in the Berkeley
MHAD dataset even though they rank around 20% of the time in
the top three in the HDM05 dataset. These differences suggest that
the underlying skeleton structures in the two datasets have differ-
ent levels of sensitivity and noise for different joints that affect the
set of the most informative joints and their temporal orderings.
Even the instructions given to the subjects on how to perform an
action lead to style variations in the performed action, resulting
in differences in the set of the most informative joints or in their
temporal orderings.

Finally, we demonstrate the performance of the aforementioned
features in an action classification setting in which the classifiers
are trained on one dataset and tested on another dataset for the
set of common actions mentioned above. For this purpose, we used
the same 7 Berkeley MHAD training subjects from the first set of
experiments to model the action classifiers and all 5 HDM05 sub-
jects to test the trained classifiers. In order to compare the cross-
database classification results with the same-database classifica-
tion results, we also considered the train/test splits used in the first
set of experiments for the Berkeley MHAD and HDM05. To keep the
discussion concise, we fix the number of the most informative
joints included in the SMIJ and HMIJ representations to N ¼ 4,
Please cite this article in press as: F. Ofli et al., Sequence of the most informative
J. Vis. Commun. (2013), http://dx.doi.org/10.1016/j.jvcir.2013.04.007
and employ the fixed temporal window approach with 167-ms
window. The same window size is also used for the HMW features.
Note that we choose N and the temporal window size with the
average action classification results in Fig. 6 not to favor any of
the feature representations.

Table 5 shows the classification results for the cross-database
generalization experiments. Our first observation is that, as ex-
pected, all feature representations perform better when trained
and tested on the same dataset (i.e., 7 MHAD/5 MHAD and 3
joints (SMIJ): A new representation for human skeletal action recognition,
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Fig. 8. The top row highlights the most informative 3 joints along the key frames of the sit down action taken from the Berkeley MHAD (left) and HDM05 (right). The bottom
row shows the corresponding stacked histogram distributions of the most informative 3 joints of the same action in different databases.

Table 5
Classification performances of different feature representations in different train/test scenarios for the set of common actions in the Berkeley MHAD and HDM05 (i.e., jump,
jumping jacks, throw, sit down, and stand up). Numbers in bold highlight the maximm classificaion rates achieved in each column.

7 MHAD/ 5 HDM05 7 MHAD/ 5 MHAD 3 HDM05/ 2 HDM05

1-NN SVM 1-NN SVM 1-NN SVM

SMIJ 85.21 88.03 93.10 95.86 89.71 98.53
HMIJ 70.42 70.42 73.79 83.45 77.94 83.82
HMW 68.31 71.87 75.97 80.44 86.54 89.71
LDSP 76.06 85.92 88.28 95.17 86.76 94.12

Table 6
Percentage drops for different features in cross-database action recognition exper-
iments are shown for 7 MHAD/ 5 HDM05 vs. 7 MHAD/ 5 MHAD (labeled as 7 M/ 5H
vs. 7 M/ 5 M) as well as 7 MHAD/ 5 HDM05 vs. 3 HDM05/ 2 HDM05 (labeled as 7 M/
5H vs. 3H/ 2H). Average percentage drop for a particular feature representation is
computed as the mean of percentage drops of the corresponding four comparisons.

7 M/ 5H vs. 7 M/ 5 M 7 M/ 5H vs. 3H/ 2H Average % drop

1-NN SVM 1-NN SVM

SMIJ 8.47 8.17 5.02 10.66 8.08
HMIJ 4.57 15.61 9.65 15.99 11.45
HMW 10.08 10.65 21.07 19.89 15.42
LDSP 13.84 9.72 12.33 8.71 11.15
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HDM05/2 HDM05). For cross-database generalization, Table 5
shows that the SMIJ representation yields the best classification re-
sults for the cross-database action recognition experiment among
other feature representations by achieving 85.21% for NN-based
classification and 88.03% for the SVM-based classification. To evalu-
ate the change in the classification performance of a feature repre-
sentation between training and testing on the same and different
datasets, we compute their percentage drops. The resulting classifi-
cation percentage drops are presented in Table 6. The average per-
centage drop is the smallest (with 8.08%) for the SMIJ
representation. Finally, Table 7 shows the confusion matrix of the
SVM-based classification using the SMIJ features for the cross-data-
base action classification experiment. We see that classification re-
sults for all actions except throw are higher than 85%, reaching 95%
for the stand up and 100% for the jumping jacks actions. The classifi-
cation result for the throw action is the lowest due to style differences
in this particular action, possibly due to different instructions given
Please cite this article in press as: F. Ofli et al., Sequence of the most informative
J. Vis. Commun. (2013), http://dx.doi.org/10.1016/j.jvcir.2013.04.007
to the subjects on how to perform the action (i.e., to throw an object
farther or closer) between the two databases. In summary, the pro-
posed SMIJ representation outperforms other feature representa-
joints (SMIJ): A new representation for human skeletal action recognition,
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Table 7
Confusion matrix for SVM classification performance of the SMIJ features for the
cross-database generalization experiment.

Actions jump jumping jacks throw sit down stand up

1 86.11 13.89
2 100.00
3 42.86 35.71 21.43
4 10.00 85.00 5.00
5 5.00 95.00

1 2 3 4 5

14 F. Ofli et al. / J. Vis. Commun. Image R. xxx (2013) xxx–xxx
tions in the challenging cross-database action recognition
experiment.
5. Conclusions

We have proposed a very intuitive and qualitatively interpret-
able skeletal motion feature representation, called sequence of
the most informative joints (SMIJ). Unlike most feature representa-
tions used for human motion analysis, which rely on sets of param-
eters that have no physical meaning, the SMIJ representation has a
very specific practical interpretation, i.e., the ordering of the joints
by their informativeness and their temporal evolution for a given
action. More specifically, in the SMIJ representation, a given action
sequence is divided into a number of temporal segments. Within
each segment, the joints that are deemed to be the most informa-
tive are selected. The sequence of such most informative joints is
then used to represent an action.

In this paper, we extended our original work, [16], to provide
more detailed description of the proposed feature representation
and provided a comprehensive analysis of the recognition perfor-
mance of different feature representations based on their action
classification performance. We showed that the intuitive and quali-
tatively interpretable feature representation, SMIJ, performs better
than the other reference feature representations (i.e., HMIJ, HMW
and LDSP) in action recognition tasks on three different datasets in
two different experimental settings. In addition, we demonstrated
the power of the SMIJ feature representation in a cross-database
experiment which resulted in relatively high recognition rates.

One of the limitations of the SMIJ representation that remains
to be addressed is its insensitivity to discriminate different planar
motions around the same joint. The joint angles are computed be-
tween two connected body segments in 3D spherical coordinates,
thus capturing only a coarse representation of the body configura-
tion. This limitation is apparent especially in the MSR Action3D
dataset as shown from our experiments. The SMIJ representation
could be further extended by using an alternative joint angle
description (e.g., Euler angles, exponential maps) and choosing
the measure of informativeness, O, accordingly.
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