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Abstract
The absence of comprehensive situational awareness information poses a sig-
nificant challenge for humanitarian organizations during their response efforts.
We present Flood Insights, an end-to-end system, that ingests data frommultiple
nontraditional data sources such as remote sensing, social sensing, and geospa-
tial data. We employ state-of-the-art natural language processing and computer
vision models to identify flood exposure, ground-level damage and flood reports,
and most importantly, urgent needs of affected people. We deploy and test
the system during a recent real-world catastrophe, the 2022 Pakistan floods, to
surface critical situational and damage information at the district level. We vali-
dated the system’s effectiveness through various statistical analyses using official
ground-truth data, showcasing its strong performance and explanatory power of
integrating multiple data sources. Moreover, the system was commended by the
United Nations Development Programme stationed in Pakistan, as well as local
authorities, for pinpointing hard-hit districts and enhancing disaster response.

INTRODUCTION

Flooding is a prevalent natural disaster that can inflict
significant harm on communities by causing infrastruc-
ture damage, loss of life, disruption of essential services,
and environmental damage (Milly et al. 2002). The main
obstacle that impedes disaster response efforts is the
absence of timely situational awareness information on
damage impacts, urgent needs of the population and flood
extent (Vieweg 2012).
Traditional methods of obtaining situational informa-

tion include conducting damage and needs assessment
surveys on the ground, which are resource-intensive,
time-consuming, and difficult to obtain in hard-to-reach
areas (Macabuag et al. 2022). The unavailability of criti-
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cal information delays decision-making and thus hinders
relief efforts, which can result in further loss of life,
property damage, and economic disruption.
To tackle the above-mentioned issue, we leverage timely

information from multiple nontraditional data sources
and artificial intelligence to develop an end-to-end sys-
tem, called Flood Insights. The system employs remote
sensing, social sensing, and geospatial data to overcome
the limitations of existing rapid assessment methods and
tools whilst answering six vital questions for enhanced
situational awareness. These questions have been derived
based on our consultations with humanitarian organi-
zations and an analysis of their official reports outlining
their information needs. This includes Disaster Emer-
gency Needs Assessment Reports (Government of Somalia

AI Magazine. 2024;1–16. wileyonlinelibrary.com/journal/aaai 1

https://orcid.org/0000-0003-1850-3688
https://orcid.org/0000-0002-2448-9694
https://orcid.org/0000-0003-1395-6290
https://orcid.org/0000-0003-3918-3230
https://orcid.org/0000-0001-7882-5502
mailto:mimran@hbku.edu.qa
http://creativecommons.org/licenses/by-nc/4.0/
https://wileyonlinelibrary.com/journal/aaai
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faaai.12196&domain=pdf&date_stamp=2024-10-18


2 AI MAGAZINE

2020; Malawi Government, The United Nations, The
World Bank, GFDRR 2019), Flood Response Plans (FAO
Representation in the Sudan 2020; Shelter Cluster 2017),
Impact Assessment Reports (Ministry of Agriculture
and Irrigation; Ministry of Livestock, Fisheries & Rural
Development, FAO, WFP 2015; NDC Solomon Islands,
City of Honiara National Capital 2018), and Flood Assess-
ment Reports (Centre for Peace and Democracy 2018;
Department of Civil Protection, UN-Agencies, NGOs 2019;
Kenya National Disaster Operations Centre, UNDP 2013).
The questions guiding our system include:

1. Which regions (province or district level) are flooded?
2. What is the extent of flooding in urban and rural

regions?
3. How many people are exposed to flooding?
4. Which age groups and genders are at higher risk?
5. What type of damage is caused by floods?
6. What are the urgent needs of the affected people?

To answer these questions, the Flood Insights system
comprises three main data processing pipelines: (i) satel-
lite and geographic information systems (GIS), (ii) social
media text, and (iii) social media images. These pipelines
incorporate various types of computational components
responsible for data fetching, processing, analysis, and
visualization. Specifically, the satellite pipeline can down-
load both Synthetic Aperture Radar (SAR) and Optical
imagery from freely available data sources (i.e., Sentinel-1
and Sentinel-2) and process it through deep learning-
based models to identify flood segments. The pipeline
also relies on nightlight imagery and population esti-
mates to determine exposed populations in urban and
rural regions. Social sensing pipelines collect textual and
imagery posts from disaster-affected areas on Twitter (now
X) and employ several state-of-the-art deep learning mod-
els, including natural language processing and image pro-
cessing, to perform flood, damage, and needs assessment.
In this paper, we describe the architecture of the Flood

Insights system and report our deployment experience
during a recent devastating flood disaster in Pakistan. Over
a 1-month period (25 August to 25 September), the sys-
tem downloaded and processed 1608 satellite images (size
= 890 GB) covering 98% of Pakistan and all 160 districts.
Moreover, the system collected and analyzed around 9.4
million text messages and 411k images posted on Twit-
ter by locals. The insights gained from integrating these
multiple data sources are presented in the Flood Insights
Dashboard1 as seen in Figure 1. This dashboard has several
components that update dynamically based on four filters
that require user selection. This includes province, district,
time period, and region type. The layout of the dashboard
is divided into three major sections. The left-hand side is
related to the satellite and geospatial analysis followed by

interactive choropleth maps showing the distribution of
needs and flood/damage reports in the middle. The right-
hand side is dedicated to social media, where the tweet text
and image analysis are detailed.

Satellite and geospatial visualizations

The first column is subdivided into two subsections, where
“Overall Country Level Statistics” indicates country-level
flood extent percentage and population exposure, along
with an interactive floodmap.Adetailed breakdownof this
is shown in the “Detailed Flood Extent & Exposure” where
the user can use all four filters to dynamically update
the “Flood Extent,” “Gender Exposure,” and “Age Group
Exposure” charts.

Tweet text and image distributions

The middle section has twomultilayer map visualizations.
The top map shows the percentage of Shelter, Dona-
tion, Rescue, Volunteering, Basic Necessities,Medical, and
Food requests in different regions, which are normal-
ized by the percentage of total tweets in that region. The
bottom map shows Flood and Damage reports based on
images per region, normalized by total images from that
region. Both these maps are dynamically updated based
on the following three global filters: province, district, and
time period.

Other social media components

This section displays several cards highlighting the total
number of reports about the affected people, needs, dam-
age, and flood reports. There are two timelines indicating
the daily distribution of tweet text and image reportswhere
users can focus on their desired date range through the
scrollbar functionality. Moreover, there is a snapshot of
the damage and flood images in the rightmost panel of
the dashboard where users can view the images in detail
by clicking on an image. Below these panels, there is a
list of the top-five locations with the highest number of
flood reports, damage reports, flood extent, and population
exposure. All these components dynamically update based
on province, district, or time period selection.
To validate the reliability of our system, we used official

ground-truth data from the government of Pakistan to
obtain a comprehensive impact score comprising human
and infrastructure impacts. Similarly, we constructed
impact scores for remote sensing and social sensing and
compared them against the official ground truth using
correlation and regression techniques. When examining
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F IGURE 1 Flood Insights system’s dashboard showing different interactive visualization components.

the predictive power of each data source separately,
remote sensing was found to be effective for infrastructure
impact, whereas social sensing was more reliable for
human impact. More importantly, when combining both
data sources, the predictive power for overall disaster
impact was significantly stronger.
Furthermore, the Flood Insights dashboard was

shared with the United Nations Development Pro-
gramme (UNDP) and other local authorities in Pakistan,
who found the information valuable for their disaster
response strategy.
A summary of our main contributions is as follows:

1. We design and develop a novel working system, Flood
Insights, that integrates nontraditional data sources and
state-of-the-art AI models for mapping flood extent,
damages, and urgent needs of the affected population.

2. We deploy the system during a real-world disaster
and conduct qualitative assessments to reveal its high
effectiveness and usefulness.

3. We reveal the individual and collective power of
remote sensing and social sensing in predicting ground
truth disaster impacts through comprehensive statisti-
cal analyses.

4. We release the Flood Insights code publicly on GitHub.

RELATEDWORK

Humanitarian organizations typically use a combination
of technology (i.e., remote sensing, crowdsourcing, GIS

and mapping), field assessments, and household surveys
to perform rapid flood, damage, and needs assessments.
With regards to flood assessments, the European Space
Agency’s Copernicus Emergency Management Service
(EMS) and United Nations Operational Satellite Appli-
cations Programme (UNOSAT) are focused on utilizing
satellite imagery for flood location and extent mapping.
UNOSAT has developed its own deep learning model for
segmenting floods in Sentinel-1 imagery (Nemni et al.
2020). These organizations typically disseminate their
information through static maps and reports, except for
UNOSAT, which also develops FloodAI S-1 Dashboards to
showcase their satellite data andGIS analysis.Whilst these
existing services pinpoint flood location and extent, crisis
responders lack insight into the scale of urban and rural
flooding. This information is needed to customize response
interventions based on the differing needs across regions.
With respect to damage assessment, several organiza-

tions (i.e., American Society of Civil Engineers, United
States Federal Emergency Management Agency, Interna-
tional Federation of Red Cross and Red Crescent Societies)
have developed tools to assess flood impacts on infrastruc-
ture, facilities, communities, food, and agriculture. These
methods are typically time-consuming, particularly in
hard-to-reach areas, and also lack standardization,making
it difficult to compare results from different assessments.
Therefore, crisis responders are unable to get a holistic
overview of all damage impacts needed to prioritize their
response efforts.
Likewise, with needs assessment, several guides

and frameworks have been developed, that is, Joint
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Assessment Mission (JAM) tool (Oman 2011), Multi-
cluster/Sector Initial Rapid Assessment (MIRA) tool
(Ziolkovska, Ali, and Qureshi 2017), Multisector Needs
Assessment (MSNA) tool (REACH 2023), which aim to
set standards for disaster experts who are assessing the
needs of affected populations during a disaster. Since this
requires extensive human involvement on the ground,
getting access to rapid needs information during the time
of a disaster becomes challenging. This results in crisis
responders being unable to provide assistance to the
impacted people in a timely manner.
By leveraging AI technology and integrating multiple

nontraditional data sources, the Flood Insights system is
the first deployable solution, to the best of our knowledge,
that overcomes the limitations of existing rapid flood, dam-
age and needs assessment tools by utilizing off-the-shelf
models (Akhtar et al. 2023). The Flood Insights system
offers a two-fold advantage. First, the system provides an
in-depth view of flood extent in both urban and rural
regions to help crisis responders prioritize their response
efforts and target their resources where they are needed
most. Second, the system incorporates machine learn-
ing algorithms and artificial intelligence to analyze social
media text and image reports about all types of damages
and needs information in real-time allowing for an up-to-
date understanding of the situation on the ground. Overall,
the Flood Insights system provides a valuable tool for dis-
aster responders, allowing them to make more informed
and effective decisions.

SYSTEM ARCHITECTURE

To perform flood exposure, damage, and population needs
mapping, the Flood Insights system relies on four types
of data including satellite imagery, geospatial data, social
media text, and images. The system architecture, drawn
in Figure 2, consists of three data processing pipelines.
The first pipeline manages the satellite and geospatial
data and includes modules for downloading, processing,
and analyzing the data. The social media text pipeline
(depicted in the middle) performs the processing of the
textual data using various natural language processing
components. Finally, the third pipeline deals with social
media image processing and consists of components that
use computer vision techniques. TheFlood Insights system
code is publicly available on GitHub.2

Satellite and geospatial data processing

To enable satellite imagery acquisition, we developed a
module utilizing Google Earth Engine’s (GEE) API. The

module supports three types of inputs: (i) name selection of
the area of interest (AOI), which queries Global Adminis-
trative Areas (GADM) database3; (ii) shapefile uploadwith
one ormore AOIs; (iii) custom-drawnAOI by the end-user.
The module simplifies the AOI, divides it into multiple
tiles, and employs a multithreaded approach for individ-
ual tile downloading, thus bypassing the 32MB download
limit of the GEE API. Additionally, the corresponding
permanent water from the European Commission’s Joint
Research Centre (JRC) global surface water (Pekel et al.
2016) is also downloaded for the same tile dimension.
In particular, six layers are downloaded, including occur-
rence (intra- and interannual variations of surface water),
change (changes in water occurrence), transitions (type
of transition between the first and last year), seasonality
(months with water in a year), recurrence (frequency with
which water returns from year to year), and extent (water
was detected or not).

Water segmentor

For water segmentation (for both permanent and flood
water), a state-of-the-art flood segmentation model is
employed based on U-Net architecture (Ronneberger, Fis-
cher, and Brox 2015). The model is trained on stacked
dual-band SAR images (VV and VH) using the Cloud to
Street Microsoft Flood Dataset (Cloud to Street - Microsoft
2022), NASA Digital Elevation Model’s single-band eleva-
tion data, and the six JRC permanent water layers. The
output is a binary mask of water and land pixels. During
inference,with a batch size of 1, themodel consumes 4.6GB
memory of a single Nvidia P100 GPU and can process 1.6
tiles/s, where each tile represents 512 × 512 × 9 pixels.

Flood water extractor

The flood segmentationmodel predicts all water, including
permanent and floodwater. By subtracting the JRC season-
ality layer, representing permanent water, from all water
predictions, we obtain flood-only water regions.

Urban and rural boundary extractors

We use harmonized nighttime lights (2019) (Zhao et al.
2022) to identify urban regions based on the difference in
light intensity. The nighttime light data are clipped to the
user’s region of interest and converted into a vector geospa-
tial format to represent the urban boundaries. To retrieve
rural boundaries in a vector format, we subtract the urban
boundary from the original region of interest.
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AI MAGAZINE 5

F IGURE 2 Flood Insights system architecture showing three data processing pipelines.

Demographics extractor

All three regions of interest (original, urban and rural) are
passed to GEE where the WorldPop Estimated Age and
Sex Structures of Residential Population per 100 × 100-m
Grid Square dataset4 is queried separately for population
breakdown by gender (male and female) and age group,
children (0–14), adolescents (15–19), adults (20–64), and
elderly (65+).

Flood extent and exposure

Once each satellite image tile is processed, the flood extent
is determined by dividing the total number of flooded
pixels by the total number of tile pixels. This calculation
is performed separately for the three regions of interest
(original, urban and rural). This flood extent information,
when multiplied with population numbers from World-
Pop, reveals information about the different populations
exposed to flooding.

Social media text processing

Tweet collector

The system uses the X (formerly Twitter) Streaming API to
collect tweetsmatching user-specified keywords, hashtags,
or geographical areas in JSON format.

Deduplicator

Duplicate tweet text, usually due to retweets, causes exces-
sive computational load. Modules that rely on textual
features, such as text classifiers, can be prevented from

processing duplicates. The deduplication module prepro-
cesses tweet text (removes emojis, URLs, emails, new lines,
and special characters) and uses a cache (ElasticSearch)
to determine duplicates. Unique tweets are indexed in the
cache specific to the crisis event.

Translation

Thismodule translates non-English tweet text into English
using the Google Translate API. The Translator module
feeds two modules in the text processing pipeline, namely
the Toponym extractor and Zero-shot classifier, which
require English data. The module uses a cache to avoid
unnecessary translations of identical tweet text.

Toponym extractor

We aim to geolocate tweets at various geographical levels,
including subnational, district, and city levels, to facili-
tate aggregations at different geographical granularities.
Since the ratio of geotagged tweets (with geo-coordinates)
is very low (<1%), we rely on toponym mentions in the
tweet text. These toponyms represent different types of
location names such as names of cities, point-of-interest,
or districts. To this end, we employ a state-of-the-art BERT-
based model fine-tuned on disaster tweets for extracting
toponyms from tweet text (Suwaileh et al. 2022).

Geolocation mapper

The location tokens identified by the Toponym extrac-
tor module are used to find georeferencing information
(i.e., complete address with latitude and longitude) from
OpenStreetMap (OSM). Additionally, tagged places (either
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6 AI MAGAZINE

F IGURE 3 Throughput (top) and latency (bottom) of different components.

bounding box or point) are used to make a reverse geo-
call to OSM to retrieve georeferencing information. Tweets
with multiple distinct location mentions are mapped to all
mentioned locations. Figure 3A shows the performance of
this module as a throughput of 40 items/s.

Zero-shot classification

To categorize tweets into flood impacts, we utilize zero-
shot text classification by employing a BART-large trans-
formermodel (Lewis et al. 2020).We devised a hierarchical
taxonomy consisting of three top-level classes: (i) dam-
age reports, (ii) affected people reports, and (iii) urgent
needs. These classes are mapped to a total of 38 low-level
classes, including five for damage reports (i.e., infrastruc-
ture, sewage, utility damage), 11 for affected people (i.e.,
affected, missing, or complaints, etc.), and 22 for urgent
needs (i.e., food, shelter, money, etc.). All 38 classes are
then expanded with various prompts to capture semanti-
cally analogous expressions. For example, “infrastructure
damage” is expressed in 22 different ways (i.e., building
damage, building destroyed, house damage, railway track
damage). We then use the following template: “The mes-
sage in this text is related to {prompt},” to classify unseen
tweet texts, where “prompt” assumes a specific value
associated with the class. We evaluate the model’s perfor-
mance (F1-score at top 1–3 predictions) using HumAID
data (Alamet al. 2021). The top 1–2 predictions of themodel
are on-par with (Alam et al. 2021), with F1-score of 77.3%
(ours) versus 78.1% (Alam et al. 2021), whereas top-three
yields best F1-score of 84.1% (ours). Figure 3B shows the
throughput and latency of this module (5 s/item).

Social media image processing

Image downloader

The Image Downloader extracts image URLs from tweets
with attached images. It maintains a collection-based
cache to store imageURLs andprevent downloading dupli-
cate images by checking for URL existence in the cache.
This reduced the noise of duplicate imageURLs. Thismod-

ule then passes the image paths and collection code to
other modules for processing.

Deduplication

To reduce heavy computational load, this module removes
near-or-exact duplicates by comparing the distance
between the deep features of two images using a threshold
of 7.1. A ResNet-50 model (He et al. 2016) pretrained on
the Places dataset (Zhou et al. 2017) is used to extract
image features5, resulting in an average throughput of 13
items/s. The module processes approximately 100 items in
8 s on average, as depicted in Figure 3C.

Relevancy classification

Social media images, even during a disaster event, are
usually noisy. The relevancy module is responsible for
identifying and removing noisy images, such as those
showing ads, cartoons, banners, and so forth. We employ a
binary classificationmodel (ResNet-50) pretrained on Ima-
geNet (Russakovsky et al. 2015) and fine-tuned on a custom
dataset (Nguyen et al. 2017). This module can process 100
images in 4 s (Figure 3D).

Flood and damage classification

This module processes a filtered stream of potentially rel-
evant images. The images are classified into two broad
categories, namely flood and damage, using the Incidents
model (Weber et al. 2020). The flood category includes four
labels (i.e.,‘flooded,’ ‘heavy rainfall’), while the damage
category includes seven labels (i.e., ‘damaged,’ ‘collapsed’).
As seen in Figure 3E, the module can classify 100 images
in 2 s, with a throughput of 50 items/s.

SYSTEMDEPLOYMENT AND USE

The Flood Insights system was deployed during the recent
Pakistan flooding in 2022. We activated the system on
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AI MAGAZINE 7

August 25th, when the Pakistani government declared a
country-wide emergency. The system ran for 1month, from
25 August to 25 September 2022.

Data

Satellite and geospatial

The system was activated to download satellite imagery
(Sentinel-1) for all districts in Pakistan (𝑁 = 160). The
global urban extent (from 2019) was queried where urban
boundaries were downloaded for 92 districts. The remain-
ing 68 districts had no urban settlement and were con-
sidered to be entirely rural. The 92 districts with urban
boundaries mainly belong to Punjab, Sindh, and Khyber
Pakhtunkhwa with 35, 28, and 18 districts, respectively.
With respect to rural boundaries, 159 districts contained
rural settlements except for Central Karachi.

Social media

Around 160 event-specific keywords in both Urdu and
English languages were used to collect relevant tweets.
Over the 1-month period, 9.4million tweets posted bymore
than one million users were collected. Around 65% of the
tweets were in Urdu and 32% in English. A tweet can be
(i) original, (ii) retweet, (iii) reply, or (iv) quoted. We con-
sider replies and quoted tweets as original tweets since
they offer additional content as opposed to retweets. Based
on this, the overall data contain 1.15 million (12%) original
(original + replies + quotes) tweets, which were consid-
ered for the Flood Insights system, whereas the remaining
8.25million (88%) retweetswere discarded. The systemalso
downloaded images associated with the original tweets
and obtained 411k images in total.

Satellite and geospatial insights

Estimated flood extent

Over the 1-month duration, around 11.48% of the entire
country was estimated to be flooded. Figure 4 shows the
geographic distribution of flooding across Pakistan for the
entire 1-month duration, which is also visualized on the
Flood Insights dashboard as an interactive map that sup-
ports a zooming functionality. This feature is intended
to answer the first question: Which regions (province or
district level) are flooded? It can be seen that Sindh and
Balochistan provinces are impacted the most. This is val-
idated through the estimated flood extent percentages as
seen in Table 1, where 25.5% of the entire Sindh is under

floodwaters, whereas 12.4% of Balochistan is inundated.
Within both these provinces, and across all provinces, rural
regions have been impacted more severely as compared
to urban regions. The information from Table 1 is visu-
alized on the Flood Insights dashboard as an interactive
gauge that dynamically updates based on the region type,
period, and province/district selection. This will allow cri-
sis responders to answer the second question:What is the
extent of flooding in urban and rural regions? Moreover,
the dashboard also indicates the top-five districts with the
highest estimated flood extent percentage across the entire
region, which dynamically updates based on the period
and province selection. This is beneficial for local disaster
management authorities to prioritize hard-hit districts.

Vulnerable populations exposed to flooding

Our system shows that approximately 18.95 million peo-
ple were directly exposed to the 2022 floods in Pakistan,
which answers the third question: How many people are
exposed to flooding? In terms of the gender distribution of
the exposed population, 9.3million females and 9.7million
males are at risk due to flooding. The age group distribu-
tion reveals that adults and children are highly vulnerable,
where 9.6 million adults and 6.8 million children are at
risk. The remaining 2.55 million constitute of elderly and
adolescents. Both the gender and age group breakdown
for the population exposed to flooding is visualized on the
dashboard as seen in Figure 1, which answers the fourth
question:Which age groups and genders are at higher risk?
This feature is critical to the District Disaster Management
Authority (DDMA) of Pakistan, where they can identify
vulnerable age groups exposed within each district. For
example, in Larkana district, which has the highest num-
ber of people exposed in total (1.26 million) and a flood
extent of 75%, the number of children and elderly exposed
togethermake uphalf of the population exposure (0.53mil-
lion), which is important information for DDMA for the
prioritization of response efforts. Likewise, the proportion
of male and female populations exposed is also displayed
on the dashboard as a pie chart, where this information
can help DDMA with prioritizing the provision of aid and
resources for men/women, who may have specific needs
and vulnerabilities.

Social sensing insights

Types of impact incurred through images

The system identified images showing flood and damage
scenes to help answer the fifth question: What type of
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F IGURE 4 Country-level flood extent over the 1-month period.

TABLE 1 Estimated flood extent percentage per province and per region type.

All region Urban region Rural Region
Area (km2) Flood extent Area (km2) Flood extent Area (km2) Flood extent

Azad Kashmir 11,422 242 (2.1%) 49 0.1 (0.3%) 11,373 242 (2.1%)
Balochistan 346,724 43,104 (12.4%) 177 2.4 (1.4%) 346,547 43,102 (12.4%)
Gilgit Baltistan 69,760 5424 (7.8%) 0 0 (0%) 69,760 5424 (7.8%)
Islamabad 902 3 (0.3%) 174 0.2 (0.1%) 728 2 (0.3%)
Khyber Pakhtunkhwa 100,897 3760 (3.7%) 391 0.5 (0.1%) 100,506 3760 (3.7%)
Punjab 205,401 12,031 (5.9%) 2352 3.6 (0.2%) 203,049 12,027 (5.9%)
Sindh 141,028 36,029 (25.5%) 938 63.9 (6.8%) 140,091 35,965 (25.7%)

damage is caused by floods? In total, 2000 flood images
and 735 damage images are observed across all districts.
Such reports contain contextual information about the
flood situation, which can help disaster responders iden-
tify different types of damages, including flooded scenes,
infrastructure damage (e.g., damaged buildings, roads,
bridges), agricultural damage, and transportation disrup-
tions. A qualitative analysis of flood and damage images
across districts reveals the devastation of floods in the
country, as illustrated in Figure 5. The top two rows show
the intensive flooding across various parts of the country,
including densely populated areas and critical infrastruc-
tures such as streets, communities, railways, and bridges.
The bottom two rows show images of various damages
during and post-flooding, such as ruptured roads, power

failures, and destroyed houses. From the 1-month dura-
tion, South Karachi district received the highest number
of flood reports (194 reports), whereas Quetta topped the
list for the highest damage reports (82 reports).

Top needs of the affected population

Over the 1-month duration and across all 160 districts, shel-
ter requests were the highest with 20k reports followed
by donation and rescue requests, with 19.7k and 19.1k
requests, as seen in Figure 1. The top-five needs are visu-
alized on the dashboard in the form of a bar graph, which
dynamically updates based on province, district, and time
period. This allows for the last question to be answered:
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AI MAGAZINE 9

F IGURE 5 Images showing flood and damage impact in different scene contexts.

What are the urgent needs of the affected people?With this
information, theNational DisasterManagementAuthority
(NDMA) canknowwhichprovince/districts have thehigh-
est shelter reports by referring to the “Shelter” choropleth
map in the center of the dashboard. This map shows the
percentage of shelter reports normalized by total reports
from each district, where Panjgur and Bajaur districts had
all shelter reports. Another way to utilize these maps is
to filter the dashboard to the top-five affected districts
where all need types can be investigated as well as the daily
distribution of total need reports.

Timeline distribution of reports from the ground

The dashboard visualizes the daily trends of tweet text and
image reports. For instance, as the number of affected indi-
vidual reports increases, the number of damage and urgent
needs reports also increases, particularly during the peak
of the disaster on August 27th to August 28th.With regards
to images, between August 25th and September 2nd, the
number of flood images is higher than damage images, but
then they merge on September 3rd. This real-time infor-
mation can help crisis responders identify trends and take
immediate action.

EVALUATION AND PAYOFF

To validate the reliability of our system, we evaluate it
using ground-truth data related to human impact (i.e.,
deaths and injured people reports) and infrastructure
impact (i.e., houses damaged/destroyed) from Pakistan’s
official government assessment of the flood disaster.6 This
official ground-truth data are available for 53 districts out
of 160 districts for the same 1-month duration in which our

system was deployed. Of these 53 districts, six belonged to
the Punjab province, 22 from Sindh, and the remaining
25 were from Khyber Pakhtunkhwa. To effectively com-
pare our system’s output with the official data, we compute
three metrics that encapsulate ground-truth, remote, and
social sensing data. These metrics include scores for dif-
ferent impact types, such as human impacts (e.g., deaths
and injuries) and infrastructure impacts (e.g., damage to
houses). Next, we outline how thesemetrics are calculated.

Ground truth metric

To develop a ground truth metric, we first compute two
types of scores using the official data at the district level
and then combine them to get the total score as follows:

1. Ground truth human impact score (𝑔𝐻𝑖): This
score aggregates the number of deaths and injuries
to quantify the human toll for each district, using the
equation:

𝑔𝐻𝑖 =
𝑑𝑖 + 𝑗𝑖
|𝑃𝑖|

,

where𝑑𝑖 represents the total number of deaths in the 𝑖th
district, 𝑗𝑖 indicates the count of injured people in the
district, 𝑃𝑖 signifies the total population of the district
under consideration.

2. Ground truth infrastructure impact score (𝑔𝐼𝑖):
This score aggregates the number of houses damaged
and destroyed to quantify the impact on infrastructure
for each district. The equation is defined as follows:

𝑔𝐼𝑖 =
𝐻𝑚𝑖 + 𝐻𝑑𝑖

|𝐵𝑖|
,
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10 AI MAGAZINE

F IGURE 6 Geographic distribution of ground truth human (left), infrastructure (center), and total (right) impact scores.

where 𝐻𝑚𝑖 corresponds to the number of partially
damaged houses whereas 𝐻𝑑𝑖 corresponds to the fully
destroyed houses in the 𝑖th district, and 𝐵𝑖 repre-
sents the total buildings within the district. We used
Microsoft Building Footprints7 to extract the total num-
ber of buildings in each district.

3. Ground truth total impact score (𝑔𝑖): The individ-
ual ground truth human impact score (𝑔𝐻𝑖) and ground
truth infrastructure impact score (𝑔𝐼𝑖) are then summed
up to obtain the ground truth total impact score (𝑔𝑖) for
each district using the following equation:

𝑔𝑖 = 𝑔𝐻𝑖 + 𝑔𝐼𝑖, 1 ≤ 𝑖 ≤ 53.

We then apply min–max normalization to standardize
the scales of all three scores separately. This normalization
technique serves to harmonize the ranges of all the ground
truth impact scores to facilitate comparisons, as visually
represented in Figure 6.
Having established the benchmark ground truth impact

scores, we then collect data from the same 53 districts
over the 1-month period (August 25th to September 25,
2022) and derive relevant metrics for two distinct domains:
remote sensing and social sensing.

Remote sensing metric

We focus on three key metrics to assess flood extent:

1. Total flood extent percentage (𝑡𝐹𝑖): This metric
quantifies the overall flood impact by calculating the
ratio of the total flooded area (in km2) to the total area
of the district (in km2).

2. Urban flood extent percentage (𝑢𝐹𝑖): This metric
specifically targets urban areas, calculating the ratio of
the urban flood area (in km2) to the total urban area (in
km2).

3. Rural flood extent percentage (𝑟𝐹𝑖): Similarly, this
metric focuses on rural regions, determining the ratio
of the rural flood area (in km2) to the total rural area (in
km2).

The distribution of these three flood extent metrics is
graphically depicted in Figure 7.

Social sensing metric

We then formulate two distinct social sensing impact
scores and combine them to get the total social sensing
impact score as follows:

1. Social sensinghuman impact score (𝑠𝐻𝑖): This score
is derived from textual messages that report on deaths,
injuries, and other forms of human suffering using the
following equation:

𝑠𝐻𝑖 =
𝑎𝑖 ∗ (𝑑𝑡𝑖∕𝑝𝑡𝑖)

|𝑃𝑖 ∗ 𝐶|
,

where 𝑎𝑖 represents the total number of affected peo-
ple reports from text messages in the 𝑖th district, 𝑑𝑡𝑖
represents the total number of tweets posted from the
district,𝑝𝑡𝑖 represents the total number of tweets posted
from the province of the district, 𝑃𝑖 represents the total
population of the district, and 𝐶 = 10𝑘 is the constant
used normalize the human toll per 10k people in each
district.
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AI MAGAZINE 11

F IGURE 7 Geographic distribution of urban (left), rural (center), and total (right) flood extent percentage.

2. Social sensing infrastructure impact score (𝑠𝐼𝑖):
This score is based on textual messages and images that
depict various types of infrastructure damage, such as
roads, bridges, and buildings. The following equation is
used:

𝑠𝐼𝑖 =
(𝐷𝑡𝑖 + 𝐷𝑚𝑖) ∗ (𝑑𝑡𝑖∕𝑝𝑡𝑖)

|𝑃𝑖 ∗ 𝐶|
,

where 𝐷𝑡𝑖 corresponds to the damage reports collected
using tweet text in the 𝑖th district, 𝐷𝑚𝑖 represents the
damage reports from images in the district, 𝑑𝑡𝑖 repre-
sents the total number of tweets posted from the district,
𝑝𝑡𝑖 represents the total number of tweets posted from
the province of the district, and 𝑃𝑖 represents the total
population of the district, and 𝐶 = 10𝑘 is the constant
used to normalize the infrastructure damage per 10k
people in each district.

3. Social sensing total impact score (𝑠𝑖): These individ-
ual social sensing human impact score (𝑠𝐻𝑖) and social
sensing infrastructure impact score (𝑠𝐼𝑖) are then com-
bined for each district to compute the social sensing
total impact score (𝑠𝑖) for each district based on the
following equation:

𝑠𝑖 = 𝑠𝐻𝑖 + 𝑠𝐼𝑖, 1 ≤ 𝑖 ≤ 53.

Similar to the ground truth metric, we utilize min–
max normalization to bring all three social sensing impact
scores onto a standardized scale separately. This normal-
ization technique equalizes the ranges of these diverse
impact scores to facilitate comparisons, as illustrated in
Figure 8.

Validation

We aim to answer two key questions through a compara-
tive evaluation:

1. Individual domain effectiveness: To what extent
does each individual domain (i.e., remote sensing
and social sensing) offer reliable indicators of disaster
impact when measured against ground truth data?

2. Collective domain effectiveness: Does the integra-
tion of data from these two domains yield more robust
and comprehensive indicators of disaster impact com-
pared to individual domains?

By addressing these questions, we seek to explain the
potential advantages and limitations of employing nontra-
ditional data sources for disaster impact assessment.

Individual domain effectiveness

To assess the relationships between each domain’s met-
rics and the corresponding ground truth impact score, we
used Spearman’s correlation test. This method is suitable
for non-normal and nonlinear disaster impact data and is
less influenced by outliers.
The remote sensing domain is investigated first, where

all three metrics (𝑡𝐹𝑖 , 𝑢𝐹𝑖 , 𝑟𝐹𝑖) are compared against the
individual and combined ground truth metrics (𝑔𝐻𝑖 , 𝑔𝐼𝑖,
𝑔𝑖). The results in Table 2 indicate that remote sensing
analysis shows significant positive correlations between all
flood extents (𝑡𝐹𝑖 , 𝑟𝐹𝑖, 𝑢𝐹𝑖) and ground truth total impact
score (𝑔𝑖) and ground truth infrastructure impact score
(𝑔𝐼𝑖), with the strongest correlations for total and rural
flood extents (𝑡𝐹𝑖 , 𝑟𝐹𝑖). Whereas, correlations with ground
truth human impact score (𝑔𝐻𝑖) are not statistically signif-
icant, due to the inherent limitations of satellite imagery
in capturing direct human consequences such as injuries
or fatalities.
To overcome theweaknesses of remote sensing in assess-

ing human impact, we complement it with social sensing,
which can provide granular, on-the-ground information.
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12 AI MAGAZINE

F IGURE 8 Geographic distribution of social sensing human (left), infrastructure (center), and total (right) impact scores.

TABLE 2 Spearman’s correlation between remote sensing data
(flood extent) and ground truth metrics (53 districts). IV and DV
indicate independent and dependent variables, respectively.

IV DV Correlation p-value
𝑡𝐹𝑖 𝑔𝑖 0.4523 0.0007
𝑟𝐹𝑖 0.4448 0.0008
𝑢𝐹𝑖 0.2760 0.0454
𝑡𝐹𝑖 𝑔𝐼𝑖 0.4352 0.0011
𝑟𝐹𝑖 0.4280 0.0014
𝑢𝐹𝑖 0.2842 0.0392
𝑡𝐹𝑖 𝑔𝐻𝑖 0.1368 0.3287
𝑟𝐹𝑖 0.1319 0.3464
𝑢𝐹𝑖 0.0085 0.9517

Bold values are statistically significant.

The individual and combined social sensing metrics (𝑠𝐻𝑖 ,
𝑠𝐼𝑖 , 𝑠𝑖) are correlated with the individual and combined
ground truth metrics (𝑔𝐻𝑖 , 𝑔𝐼𝑖, 𝑔𝑖). The analysis showed
weak positive correlations across all combinations, with
p-values exceeding 0.05. This prompted us to dig deeper
by taking into account the geographic nuances that could
influence social sensing data such as variations in inter-
net penetration across geographies. To address this geo-
graphic variability, we performed geographically weighted
regression (GWR) analysis. Remarkably, the GWR model
demonstrated a significant improvement in 𝑅2 values
when compared to the globalmodel (ordinary least squares
regression) for each variable. This indicates that the rela-
tionship between social sensing metrics and ground truth
impact scores varies spatially. In particular, the biggest
improvement is seen for social sensing infrastructure
impact score (𝑠𝐼𝑖) against ground truth total impact score
(𝑔𝑖), which achieves the highest GWR 𝑅2 of 0.564.
To answer the first question, we find that remote sens-

ing data, particularly total and rural flood extent, as well as

social sensing data, when adjusted for geographic variabil-
ity, can offer valuable insights into ground truth total and
infrastructural disaster impacts.

Collective domain effectiveness

Both remote sensing total flood extent percentage (𝑡𝐹𝑖) and
social sensing total impact score (𝑠𝑖) metrics are then com-
bined to investigate their correlation with ground truth
total impact scoremetric (𝑔𝑖).We hypothesize that districts
with high remote sensing and social sensing will demon-
strate a stronger correlationwith ground truth impact data.
To test this hypothesis, we segmented the dataset into
four buckets, each representing a unique combination of
remote and social sensing signals:

1. Low remote sensing + Low social sensing (17 districts)
2. Low remote sensing+High social sensing (10 districts)
3. High remote sensing+ Low social sensing (10 districts)
4. High remote sensing+High social sensing (16 districts)

To ensure a balanced distribution of districts across
these categories, we employed the median value as the
differentiating threshold for both metrics. Utilizing Spear-
man’s correlation test, we found a statistically significant
positive correlation of r = 0.5578 (with a p-value of 0.0248,
p <0.05) for the fourth bucket encompassing districts with
high levels of both remote sensing and social sensing sig-
nals, whilst the remaining three buckets were found to
be statistically insignificant. This supports the notion that
combining data sources provides more accurate insights.
Next, we employed GWR to account for spatial het-

erogeneity. The correlation analysis using remote sensing
impact scores (independent variable) with ground truth
impact scores (dependent variable) yields a weak corre-
lation of 𝑅2 = 0.3483. Interestingly, using social sensing
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AI MAGAZINE 13

F IGURE 9 Geographically weighted regression modeling of the relationship between the combined remote and social sensing data (𝑡𝐹𝑖
and 𝑠𝑖) versus the ground-truth impact data (𝑔𝑖) across 53 districts in Pakistan. Numbers in brackets in the legend represent the number of
districts in each bucket.

data alone yields a stronger correlation at𝑅2 = 0.7744. The
most significant results occurred when combining remote
sensing and social sensing, that is, 𝑅2 = 0.7824, indicat-
ing that information obtained from these data sources
(independent variables) has a reasonably good explanatory
power and explain a significant portion of the variation in
the dependent variable (ground truth total impact score).
Next, we used the same combination to run the GWR anal-
ysis for individual districts to highlight the distribution
of 𝑅2 across all 53 districts as depicted in Figure 9. We
observed that most districts (N = 16) represent a good fit,
that is, 0.56 ≤ 𝑅2 ≤ 0.62. Around 25 districts show mod-
erate fit with 0.41 ≤ 𝑅2 ≤ 0.55. Whereas only 12 districts
fall below 𝑅2 ≤ 0.40, indicating a weak correlation. Upon
further investigation, we observed that of all districts hav-
ing 𝑅2 ≤ 0.50, 12 are entirely rural and 17 districts with
≥75% rural population, indicating low internet and social
media usage.
To answer the second question, our findings show that

districts with high levels of both remote sensing and
social sensing data sources have the strongest correla-
tions with ground truth impact data, indicating that a
combined approach captures a broader and more accu-
rate picture of disaster effects as compared to using each
domain individually.

Qualitative evaluation

As our deployment was activated during the actual
flooding event, the data produced by the system were

shared with official humanitarian organizations, includ-
ing UNDP and other local government agencies. The
authorities found the system useful for identifying hard-
hit districts in real-time. In particular, the stakehold-
ers mentioned that this allows better resource allo-
cation and distribution of funds under time-critical
situations.

LESSONS LEARNED

During the development, deployment, andmaintenance of
the Flood Insights system, there are several lessons learned
worth sharing. First, when developing the zero-shot clas-
sifier, we followed an iterative approach of honing and
expanding prompts within each class of the taxonomy.
We found that clear prompts with minimal class overlap
are crucial to prevent model confusion. Second, during
deployment, we realized that the Flood Insights dashboard
is influenced by the chosen AOI during activation. For
instance, a province-level boundary restricts insights to
that level or broader (i.e., country). Shifting to finer views
(i.e., district level) requires time-consuming recomputa-
tion of all the satellite andGISmodules.Hence,meticulous
granularity selection before activation is advised. Lastly,
to maintain the Flood Insights system, three team mem-
bers monitored the status of all the modules in terms
of storage capacity, error handling, and other opera-
tional aspects. This monitoring was done on a daily basis
to ensure the efficient operation of the Flood Insights
system.
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14 AI MAGAZINE

CONCLUSIONS

To address the critical information needs of disaster
responders, we presented Flood Insights, an on-the-fly sys-
tem that leverages multisource data and employs state-of-
the-art natural language processing and computer vision
techniques to surface situational information about flood
extent, incurred damages, and population needs. The sys-
tem relies on remote sensing, social sensing, and geospatial
data to provide disaggregated insights at national and
subnational levels. We deployed the Flood Insights sys-
tem during a real-world disaster, the 2022 Pakistan floods,
for 1 month and later evaluated the data using official
ground truth. Our findings revealed that remote sensing
data effectively captures infrastructural disaster impacts,
while social sensing data provides valuable insights into
human impacts. More importantly, when both domains
are combined, it aligns more strongly with the ground
truth disaster impacts. The dashboard was conveyed to
the UNDP stationed in Pakistan, as well as local author-
ities, who considered it to be valuable information for
enhancing disaster response strategy.
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5http://places2.csail.mit.edu/models_places365/resnet50_places365.
pth.tar

6https://www.pdma.gov.pk/
7https://github.com/microsoft/GlobalMLBuildingFootprints

REFERENCES
Akhtar, Z., U. Qazi, R. Sadiq, A. El-Sakka, M. Sajjad, F. Ofli, and M.
Imran. 2023. “Mapping Flood Exposure, Damage, and Population
Needs Using Remote and Social Sensing: A Case Study of 2022
Pakistan Floods.” In Proceedings of the ACMWeb Conference 2023,
WWW ’23, 4120–28. NY, USA.

Alam, F., U. Qazi, M. Imran, and F. Ofli. 2021. “HumAID: Human-
Annotated Disaster Incidents Data from Twitter with Deep
Learning Benchmarks.” In ICWSM, 933–42. AAAI.

Centre for Peace and Democracy. 2018. “Galgaduud Flooding
Assessment Report.” https://www.humanitarianresponse.info/fr/
operations/somalia/assessment/galgaduud-flooding-assessment-
report (accessed November 29, 2023).

Cloud to Street - Microsoft. 2022. “A Global Flood Events and
CloudCoverDataset (Version 1.0).” https://registry.opendata.aws/
c2smsfloods/ (accessed November 29, 2023).

Department of Civil Protection, UN-Agencies, NGOs. 2019. “Inter-
Agency Flooding Rapid Assessment Report.” https://assessments.
hpc.tools/assessment/7aeebd8c-f7f8-4ab0-b767-c7b16a34c410
(accessed November 29, 2023).

FAO Representation in the Sudan. 2020. “The Sudan - 2020 Flood
Response Overview.” https://www.fao.org/3/cb1386en/cb1386en.
pdf (accessed November 29, 2023).

Government of Somalia. 2020. “Joint Rapid Needs Assessment
Report on Flood Displaced Population in Afgoye and Surround-
ing Villages.” http://bit.ly/3N7cWme (accessed November 29,
2023).

He, K., X. Zhang, S. Ren, and J. Sun. 2016. “Deep Residual Learning
for Image Recognition.” In CVPR, 770–78. IEEE.

Kenya National Disaster Operations Centre, UNDP. 2013. “Ini-
tial Rapid Assessment Report for Flooding in Narok County.”
https://www.humanitarianresponse.info/en/operations/kenya/
assessment/initial-rapid-assessment-report-flooding-narok-
county (accessed November 29, 2023).

Lewis, M., Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O.
Levy, V. Stoyanov, and L. Zettlemoyer. 2020. “BART: Denoising
Sequence-to-Sequence Pre-Training for Natural Language Gener-
ation, Translation, andComprehension.” InProceedings of the 58th
Annual Meeting of the Association for Computational Linguistics,
7871–80, Online. Association for Computational Linguistics.

Macabuag, J., C. Altheim, S. Thorvaldsdottir, and D. Perks. 2022.
“Damage Assessments by International Engineers Following the
Albania Earthquake of November 2019.” International Journal of
Disaster Risk Reduction 72: 102822.

Malawi Government, The United Nations, The World Bank,
GFDRR. 2019. “Malawi 2019 Floods Post-Disaster Needs Assess-
ment Report.” https://www.unicef.org/malawi/reports/malawi-
2019-floods-post-disaster-needs-assessment-report (accessed
November 29, 2023).

Milly, P. C. D., R. T. Wetherald, K. Dunne, and T. L. Delworth. 2002.
“Increasing Risk of Great Floods in a Changing Climate.” Nature
415(6871): 514–17.

 23719621, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aaai.12196 by C

ochrane Q
atar, W

iley O
nline L

ibrary on [19/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-1850-3688
https://orcid.org/0000-0003-1850-3688
https://orcid.org/0000-0002-2448-9694
https://orcid.org/0000-0002-2448-9694
https://orcid.org/0000-0003-1395-6290
https://orcid.org/0000-0003-1395-6290
https://orcid.org/0000-0003-3918-3230
https://orcid.org/0000-0003-3918-3230
https://orcid.org/0000-0001-7882-5502
https://orcid.org/0000-0001-7882-5502
https://orcid.org/0000-0001-7882-5502
https://flood-insights.qcri.org/pakistan_floods_2022
https://github.com/CrisisComputing/flood_insights
https://gadm.org/data.html
https://www.worldpop.org
http://places2.csail.mit.edu/models_places365/resnet50_places365.pth.tar
http://places2.csail.mit.edu/models_places365/resnet50_places365.pth.tar
https://www.pdma.gov.pk/
https://github.com/microsoft/GlobalMLBuildingFootprints
https://www.humanitarianresponse.info/fr/operations/somalia/assessment/galgaduud-flooding-assessment-report
https://www.humanitarianresponse.info/fr/operations/somalia/assessment/galgaduud-flooding-assessment-report
https://www.humanitarianresponse.info/fr/operations/somalia/assessment/galgaduud-flooding-assessment-report
https://registry.opendata.aws/c2smsfloods/
https://registry.opendata.aws/c2smsfloods/
https://assessments.hpc.tools/assessment/7aeebd8c-f7f8-4ab0-b767-c7b16a34c410
https://assessments.hpc.tools/assessment/7aeebd8c-f7f8-4ab0-b767-c7b16a34c410
https://www.fao.org/3/cb1386en/cb1386en.pdf
https://www.fao.org/3/cb1386en/cb1386en.pdf
http://bit.ly/3N7cWme
https://www.humanitarianresponse.info/en/operations/kenya/assessment/initial-rapid-assessment-report-flooding-narok-county
https://www.humanitarianresponse.info/en/operations/kenya/assessment/initial-rapid-assessment-report-flooding-narok-county
https://www.humanitarianresponse.info/en/operations/kenya/assessment/initial-rapid-assessment-report-flooding-narok-county
https://www.unicef.org/malawi/reports/malawi-2019-floods-post-disaster-needs-assessment-report
https://www.unicef.org/malawi/reports/malawi-2019-floods-post-disaster-needs-assessment-report


AI MAGAZINE 15

Ministry of Agriculture and Irrigation; Ministry of Livestock,
Fisheries & Rural Development, FAO, WFP. 2015. “Agricul-
ture and Livelihood Flood Impact Assessment in Myanmar.”
https://www.fao.org/fileadmin/user_upload/emergencies/docs/
Final_Impact_Assessment_Report_final.pdf (accessed November
29, 2023).

NDC Solomon Islands, City of Honiara National Capital. 2018.
“Dashboard: Initial Damage Assessment-East Honiara Flooding.”
https://bit.ly/47ScOi9 (accessed November 29, 2023).

Nemni, E., J. Bullock, S. Belabbes, and L. Bromley. 2020. “Fully
Convolutional Neural Network for Rapid Flood Segmentation
in Synthetic Aperture Radar Imagery.” Remote Sensing 12(16):
2532.

Nguyen, D. T., F. Alam, F. Ofli, and M. Imran. 2017. “Auto-
matic Image Filtering on Social Networks Using Deep Learning
and Perceptual Hashing During Crises.” In ISCRAM, 499–511.
ISCRAM.

Oman, A. 2011. “Completing the Jigsaw Puzzle: Joint Assessment
Missions (JAM).” Field Exchange-Emergency Nutrition Network
ENN. 49–51. 40.

Pekel, J.-F., A. Cottam, N. Gorelick, and A. S. Belward. 2016. “High-
Resolution Mapping of Global Surface Water and Its Long-Term
Changes.” Nature 540(7633): 418–22.

REACH. 2023. “Multi-Sector Needs Assessment (MSNA) - Global
Key Findings, January 2023.” https://reliefweb.int/report/world/
multi-sector-needs-assessment-msna-global-key-findings-
january-2023 (accessed October 9, 2024).

Ronneberger, O., P. Fischer, and T. Brox. 2015. “U-Net: Convolutional
Networks for Biomedical Image Segmentation.” In International
Conference on Medical Image Computing and Computer-Assisted
Intervention, 234–41. Springer.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, et al. 2015. “ImageNet Large Scale Visual Recognition
Challenge.” IJCV 115(3): 211–52.

Shelter Cluster. 2017. “Afghanisatan (North) Flood Response Evalu-
ation Assessment.” https://reliefweb.int/sites/reliefweb.int/files/
resources/reach_afg_report_shelter_flood_response_april2017_1.
pdf (accessed November 29, 2023).

Suwaileh, R., T. Elsayed, M. Imran, andH. Sajjad. 2022. “When a Dis-
aster Happens,We are Ready: LocationMention Recognition from
Crisis Tweets.” International Journal of Disaster Risk Reduction 78:
103107.

Vieweg, S. E. 2012. “Situational Awareness in Mass Emergency: A
Behavioral and Linguistic Analysis of Microblogged Communica-
tions.” Ph.D. thesis, University of Colorado at Boulder.

Weber, E., N. Marzo, D. P. Papadopoulos, A. Biswas, A. Lapedriza,
F. Ofli, M. Imran, and A. Torralba. 2020. “Detecting Natural Dis-
asters, Damage, and Incidents in the Wild.” In ECCV, 331–50.
Springer.

Zhao, M., C. Cheng, Y. Zhou, X. Li, S. Shen, and C. Song. 2022.
“A Global Dataset of Annual Urban Extents (1992–2020) from
Harmonized Nighttime Lights.” Earth System Science Data 14(2):
517–34.

Zhou, B., A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. 2017.
“Places: A 10 Million Image Database for Scene Recognition.”
PAMI 40(6): 1452–64.

Ziolkovska, A., H. Ali, and B. Qureshi. 2017. “Development of
Multi-Cluster Rapid and In-Depth Assessment Methodologies in
Afghanistan.” Field Exchange. 16. 56.

How to cite this article: Akhtar, Z., U. Qazi, A.
El-Sakka, R. Sadiq, F. Ofli, and M. Imran. 2024.
“Fusing remote and social sensing data for flood
impact mapping.” AI Magazine 1–16.
https://doi.org/10.1002/aaai.12196

AUTH OR BIOGRAPH IES

Zainab Akhtar has experience with the fundamentals
of GIS where she is able to analyze and visualize data to
uncover relationships that are not readily apparent.Her
interest centers around using different research meth-
ods to effectively tackle humanitarian issues with the
help of social media, machine learning algorithms, and
GIS software’s.

Umair Qazi is an experienced Software Engineer who
holds a degree in Information Systems from Carnegie
Mellon University and has contributed to multiple dis-
aster management technologies, combining AI with
real-time data systems. With experience in full-stack
development, Umair has contributed to the design and
implementation of platforms across various industries.

Aya El-Sakka has experience in analyzing com-
plex datasets and developing interactive dashboards
that support real-time decision-making. She has con-
tributed to the development of the Flood Insights
system to ensure the dashboard operates seamlessly in
real time.

Rizwan Sadiq is an AI Specialist focused on devel-
oping advanced AI models for disaster management.
He has contributed to integrating social and remote
sensing data to enhance real-time disaster response
and crisis prediction, particularly in floodmapping and
damage assessment.

Ferda Ofli is a Senior Scientist at the Qatar Comput-
ing Research Institute since 2014. He received the B.Sc.
degrees both in Electrical and Electronics Engineer-
ing and Computer Engineering, and the Ph.D. degree
in Electrical Engineering from Koc University, Istan-
bul, Turkey, in 2005 and 2010, respectively. From 2010
to 2014, he was a Postdoctoral Researcher at the Uni-
versity of California, Berkeley, CA, USA. His research
interests cover computer vision and machine learning
with a particular focus on applications in the human-
itarian domain. He is a Senior Member of IEEE and

 23719621, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aaai.12196 by C

ochrane Q
atar, W

iley O
nline L

ibrary on [19/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.fao.org/fileadmin/user_upload/emergencies/docs/Final_Impact_Assessment_Report_final.pdf
https://www.fao.org/fileadmin/user_upload/emergencies/docs/Final_Impact_Assessment_Report_final.pdf
https://bit.ly/47ScOi9
https://reliefweb.int/report/world/multi-sector-needs-assessment-msna-global-key-findings-january-2023
https://reliefweb.int/report/world/multi-sector-needs-assessment-msna-global-key-findings-january-2023
https://reliefweb.int/report/world/multi-sector-needs-assessment-msna-global-key-findings-january-2023
https://reliefweb.int/sites/reliefweb.int/files/resources/reach_afg_report_shelter_flood_response_april2017_1.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/reach_afg_report_shelter_flood_response_april2017_1.pdf
https://reliefweb.int/sites/reliefweb.int/files/resources/reach_afg_report_shelter_flood_response_april2017_1.pdf
https://doi.org/10.1002/aaai.12196


16 AI MAGAZINE

ACM and a member of AAAI with over 80 publica-
tions in top-tier conferences and journals including
CVPR, ECCV, WWW, AAAI, and PAMI. He won the
AAAI Deployed Application Award in 2024, the CVPR
Outstanding Reviewer Awards in 2020 and 2021, the
ISCRAMBest CoRe Paper Award in 2020, the ISCRAM
Best Insight Paper and Best Paper Runner-up Awards
in 2019, the ISCRAM Best Paper Runner-up Award in
2017, the Elsevier JVCI Best Paper Award in 2015, and
the IEEE SIU Best Student Paper Award in 2011. He
also received the Graduate Studies Excellence Award
in 2010 for his outstanding academic achievement at
Koc University.

Muhammad Imran is a Senior Scientist and the Lead
of the Crisis Computing Group at the Qatar Comput-
ing Research Institute (QCRI). He completed his Ph.D.
in Computer Science at the University of Trento in

2013 and subsequently joined QCRI, where he spent
2 years as a Postdoctoral Researcher and 5 years as a
Scientist. His research focuses on using artificial intel-
ligence, machine learning, and big data analytics to
improve decision-making in areas such as humanitar-
ian response and resilience. Dr. Imran has authored
over 130 peer-reviewed publications in top-tier con-
ferences and journals, including WWW, ACL, AAAI,
ECCV, and PAMI. He has received five best paper
awards, and his work has been featured in outlets such
as the BBC, Wall Street Journal, WIRED Magazine,
and New Scientist. He frequently delivers keynotes and
invited talks at international events and serves as an
Associate Editor for the journal Frontiers in Big Data.
Additionally, he contributes as an Editor for special
issues in leading journals and is actively involved as a
track chair and programcommitteemember for various
conferences and journals.

 23719621, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aaai.12196 by C

ochrane Q
atar, W

iley O
nline L

ibrary on [19/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Fusing remote and social sensing data for flood impact mapping
	Abstract
	INTRODUCTION
	Satellite and geospatial visualizations
	Tweet text and image distributions
	Other social media components


	RELATED WORK
	SYSTEM ARCHITECTURE
	Satellite and geospatial data processing
	Water segmentor
	Flood water extractor
	Urban and rural boundary extractors
	Demographics extractor
	Flood extent and exposure

	Social media text processing
	Tweet collector
	Deduplicator
	Translation
	Toponym extractor
	Geolocation mapper
	Zero-shot classification

	Social media image processing
	Image downloader
	Deduplication
	Relevancy classification
	Flood and damage classification


	SYSTEM DEPLOYMENT AND USE
	Data
	Satellite and geospatial
	Social media

	Satellite and geospatial insights
	Estimated flood extent
	Vulnerable populations exposed to flooding

	Social sensing insights
	Types of impact incurred through images
	Top needs of the affected population
	Timeline distribution of reports from the ground


	EVALUATION AND PAYOFF
	Ground truth metric
	Remote sensing metric
	Social sensing metric
	Validation
	Individual domain effectiveness
	Collective domain effectiveness
	Qualitative evaluation


	LESSONS LEARNED
	CONCLUSIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	ORCID
	ENDNOTES
	REFERENCES
	AUTHOR BIOGRAPHIES


