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ABSTRACT

This paper presents a framework for unsupervised video analysis in
the context of dance performances, where gestures and 3D move-
ments of a dancer are characterized by repetition of a set of unknown
dance figures. The system is trained in an unsupervised manner
using Hidden Markov Models (HMMs) to automatically segment
multi-view video recordings of a dancer into recurring elementary
temporal body motion patterns to identify the dance figures. That
is, a parallel HMM structure is employed to automatically determine
the number and the temporal boundaries of different dance figures
in a given dance video. The success of the analysis framework has
been evaluated by visualizing these dance figures on a dancing avatar
animated by the computed 3D analysis parameters. Experimental
results demonstrate that the proposed framework enables synthetic
agents and/or robots to learn dance figures from video automatically.

Index Terms— unsupervised human body motion analysis,
dance figure identification, dancing avatar animation

1. INTRODUCTION

State of the art human motion analysis research is devoted to detect,
track and interpret human behaviors from image sequences. Com-
prehensive surveys of human motion analysis research can be found
in [1, 2, 3]. Estimation of 3D body posture is a key problem in hu-
man body motion analysis, especially for interpreting human behav-
iors towards realistic body motion synthesis and animation. Some
works rely on direct use of a motion capture process to estimate the
set of body posture parameters without explicitly modeling the tem-
poral dynamics of the body motion [4, 5, 6, 7]. They mostly aim
at regenerating the original body posture parameters in a video and
synthesizing articulated 3D human actions as human behaviors like
walking, running, sitting down, standing up, climbing stairs, etc.

The analysis and synthesis of body movements in the context
of a dance performance pose new challenges. In the first place, the
body motion patterns, i.e, the dance figures, are very complex, but
they usually follow certain syntactic rules and hierarchies. Further-
more, they are open to interpretation, and exhibit variations in time
even for the same person. Mori and Hoshino propose an indepen-
dent component analysis based technique to extract the motion sig-
nal corresponding to the perceptually meaningful motion features
that characterize the complex human body movements with appli-
cations to dance scenarios [8]. Brand and Hertzmann introduce the
idea of “style machines,” where the same class of motions with dif-
ferent style (such as walking slowly, rapidly etc.) is described by
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HMMs and other stylistic motions can be generated by the analysis
results of these HMMs [9]. Nakazawa et al. introduce the notion of
dividing the human motion into some motion primitives that consist
of a “basic motion” and a “motion style” [10, 11]. The basic motion
is assumed to be common to all dancers, and the style represents
their characteristics.

We address the body motion analysis and synthesis problem in
the context of dance performances, considering a fully automatic
system which can be then used to drive the movements of a danc-
ing avatar. The main novelty of this paper is to perform an unsu-
pervised analysis of dance figures from the dance video recordings
where each dance figure is modeled and synthesized using a set of
HMM structures. The HMM structure is an extension of that pro-
posed by [12] to model head gestures by studying the correlation
between head gestures and speech prosody. Our previous work on
audio-visual dance analysis considered supervised HMM analysis
of audio, where dance figures were manually marked [13, 14]. Our
main goal in this paper is unsupervised analysis of the variations be-
tween dance figures of certain dancers and dances from video. In
order to analyze these variations, syntactic modeling of dance fig-
ures in terms of elementary dance motion patterns is desired and this
paper aims to determine elementary dance motion patterns by per-
forming an unsupervised clustering of body posture parameters. By
means of such modeling of elementary dance motion patterns and
complete dance figures, we hope to arrive at a syntactic dance de-
scription language although this is beyond the scope of the current
paper.

2. SYSTEM DESCRIPTION

The overall system comprises of two modules: dance figure anal-
ysis and dance figure animation. In the analysis block, multiview
video sequences are analyzed in order to capture the time-varying
posture of the dancer’s body. The body posture parameters are then
used to temporally segment the multiview videos into semantic re-
curring dance motion patterns by training a set of HMMs, each of
them modeling a different dance figure. The animation module gen-
erates dance figures using the computed body motion parameters on
a dancing avatar. Detailed descriptions of the analysis and anima-
tion modules are given in Section 3 and 5, respectively. Currently,
our avatar has been trained to dance only three genres,salsa, belly
andfolk.

3. DANCE FIGURE ANALYSIS

In this research, HMMs are employed to model the dance figures,
i.e., the elementary body motion patterns recurring in the dance per-
formances. The HMMs are trained with the parameter set resulting



Fig. 1. Parallel HMM structure.

from the motion capture process [14], that includes the 3D joint po-
sitions. For each dance figure, two separate HMMs are employed to
better capture the dynamic behavior of the dancing body, one for the
upper part and one for the lower part of the body. The HMM struc-
ture for the upper part of the body models basically the movement
of the arms while the one for the lower part models the movement of
the legs.

A typical dance figure contains a well-defined sequence of
movements, hence we employ a left-to-right HMM structure to
model each figure. Each body posture parameter is represented by a
single Gaussian function and one full covariance matrix is computed
for each HMM. The temporal segmentation of the body motion
parameters is performed using Viterbi decoding to maximize the
probability of model match, which is the probability of body mo-
tion parameters given the trained HMM. This rather simple scheme
leads to satisfactory results without need for more complex HMM
configurations.

The relatively crucial task is to automatically determine the
number of body motion patterns, i.e., the number of different dance
figures, for the upper and lower parts of the body in the given video
recordings. Since different figures may have different representation
complexities and the duration of a figure may vary from one dance
figure to another, one should also consider optimizing the number
of states in the HMM structures that correspond to different dance
figures. Consequently, there are two important quantities to be deter-
mined before training the HMMs that model the dance figures: the
number of different dance motion patterns in a given video recording
and the number of states necessary for each of these different dance
motion patterns.

Parallel HMM structures are employed to determine the two im-
portant parameters before training of the complete model (see Fig-
ure 1). This HMM structure hasM parallel branches andN states
which are to be optimized jointly. An iterative approach is used for
selection ofM andN . For varying values ofM andN , two fit-
ness measures are checked. The first fitness measure is the aver-
age logarithmic probability of model match, which increases with
the increasing number of temporal dance motion patterns. Conse-
quently, the second fitness measure, which is the average statistical
separation between two similar temporal dance motion patterns, in-
creases with the decreasing number of temporal dance motion pat-
terns. Each branch in these parallel HMM structures corresponds to
different dance motion pattern that exists in the dance video record-
ings. Therefore, the parallel HMM structure with the optimum num-
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Fig. 2. Joint maximization of the logarithmic probability of the
model match and average statistical separation between two simi-
lar temporal body motion patterns with varying number of states for
the 6 HMM structures (two forbelly in the first row, two forfolk
in the second row and two forsalsain the last row) Different lines
represent different number of branches.

ber of branches can be interpreted as the collection of models for
different dance figures.

4. ANALYSIS EXPERIMENTS AND RESULTS

Our training dataset includes multiview video recordings of three
dance performances, one forsalsa, one forbelly and one forfolk,
each with a duration of approximately 5 minutes. The performances
are recorded synchronously from 6 cameras at 30 fps. Each video
recording consists of several different dance figures repeated succes-
sively during the whole performance.

For body motion analysis, we automatically segment the figures
from the video and determine the start and end frames of each dance
figure throughout the entire dance recordings. The two HMM mod-
els of each dance figure, for the upper and lower parts of the body,
are trained in an unsupervised manner with the body posture param-
eters captured from the multiview dance recordings.

In order to determine the optimal number of branches and states
for each of the HMMs, we train each parallel HMM with different
number of branches (varying from 1-5) and of states (varying from
2 to 15). By computing the average logarithmic probability of the
model match and average statistical separation between two similar
temporal dance motion patterns for each iteration, we examine the
progression of the learning process and the accuracy of the trained
model. The evolution of these parameters for the totality of the 6
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Fig. 3. For the salsa figure, variation of the means of three parame-
ters over the HMM states (plotted in red) and evolution of the same
three parameters during four different realizations sampled from the
training video (plotted in blue)

HMM structures that we trained is displayed in Figure 2.
The optimal number of HMM branches and states deduced from

Figure 2 is the point that maximizes the plot. We observe that the
optimal numbers are related to the complexity of the dance figure.
In the case of thesalsafigure, which is more complicated than the
belly and thefolk, the optimal numbers are around 5 branches-10
states for the upper part of the body and 3 branches-15 states for the
lower part of the body whereas these numbers are around 3 branches-
15 states and 2 branches-15 states, for the upper and lower parts of
the body, respectively, for thebelly figure; and 3 branches-14 states
and 2 branches-15 states, for the upper and lower parts of the body,
respectively, for thefolk figure.

In order to verify that the posture parameters are correctly mod-
eled with the resulting HMMs, in Figure 3, we compare, for some
parameters, the evolution of the means of their Gaussian distribu-
tions over the HMM states with the evolution of the same param-
eters through the realizations of the corresponding dance figures in
the training data set. The shapes of the evolution are clearly observed
to be similar, even for the parameters which show significant varia-
tions from one realization to another in the training set and are thus
difficult to model.

5. DANCE ANIMATION

In order to animate a virtual 3D character using the output of the
analysis stage, we used a specialized commercial software package
[15]. For our purposes, it makes sense to treat each set of body
posture parameters segmented by the analysis stage as a new set of
motion capture data (marker positions). Therefore, we have created
the animation sequences in Figure 4 by importing the analysis results
into the aforementioned software together with a pre-designed 3D
human body.

The process of animating a virtual character is outlined in Figure
5. Usually, the process starts by manually fitting the character (actor)
to a well-defined pose (ideally, aT-pose) to estimate dimensions at
the motion capture stage. Our original motion capture data did not
include a T-pose, but we were still able to obtain acceptable results
by using a similar pose selected from one of the output sequences.

In order to determine how the motion capture data is to be in-
terpreted, it is necessary to assign markers toactor cells. The set
of assignments we have chosen to employ is depicted in Figure 6,
where the circles represent the cells. Some cells required more than
one marker to behave properly during the animation. Among these,
the torso was somewhat problematic, which made it necessary for us
to set a fixed orientation for the upper torso in the sequences for all
genres (salsa, bellyandfolk dance). The most likely cause for this is
the poor choice of marker positions in the torso area, especially for
marker 9.

Once the body posture parameters are successfully imported as
motion capture data, the virtual character is animated and rendered
using standard matrix palette skinning techniques, as shown in Fig-
ure 4. Video sequences for the animated dance figures can be found
athttp://mvgl.ku.edu.tr/bodymotionanalysis/icip08/.

(a)

(b)

Fig. 4. (a) Animation results for automatic belly dance synthesis. (b)
Animation results for automatic salsa dance synthesis.



Fig. 5. Animation process outline.

Fig. 6. Marker assignments.

6. CONCLUSIONS

The HMM based unsupervised segmentation scheme proves to be
successful in determining the number of different dance figures in
a given video recording and in optimizing the number of states in
the corresponding HMMs to better capture the dynamics of the body
motion patterns. Currently, our dancing avatar has been trained for
salsa, belly and folk. The proposed framework can also be useful
for the analysis of movement disabilities and monitoring of physical
activity in the elderly.

It is important that we can generate various human body motion
patterns easily and realistically to create attractive content for dance
synthesis. The experiments show that the avatar can successfully
synthesize the dance figures in a very realistic manner.
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