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ABSTRACT

We propose a framework for modeling, analysis, annotation and
synthesis of multi-modal dance performances. We analyze corre-
lations between music features and dance figure labels on training
dance videos in order to construct a mapping from music measures
(segments) to dance figures towards generating music-driven dance
choreographies. We assume that dance figure segment boundaries
coincide with music measures (audio boundaries). For each training
video, figure segments are manually labeled by an expert to indicate
the type of dance motion. Chroma features of each measure are used
for music analysis. We model temporal statistics of such chroma fea-
tures corresponding to each dance figure label to identify different
rhythmic patterns for that dance motion. The correlations between
dance figures and music measures, as well as, correlations between
consecutive dance figures are used to construct a mapping for music-
driven dance choreography synthesis. Experimental results demon-
strate the success of proposed music-driven choreography synthesis
framework.

Index Terms— multimodal dance modeling, music-driven
dance choreography synthesis

1. INTRODUCTION

Dance is a collective union of the music and the human body move-
ments. Automatic dance analysis, annotation and synthesis have
been studied extensively in the literature with emphasis on human
body motion analysis/synthesis and dance music analysis whereas
there is relatively little work on the open problem of music-driven
automatic dance synthesis as we address in this paper.

One of the early dance notation systems for human body motion,
known as Labanotation, defines a data format to record human dance
figures with graphical symbols that provides a detailed sequence of
changes in human posture during a dance figure [1]. In [2], Li et
al. segment body motions into textons, each of which was modeled
by a linear dynamic system, to synthesize human body motion in a
manner statistically similar to the original motion capture data by
considering the likelihood of switching from one texton to the next.
In [3], Ruiz and Vachon perform analysis of dance figures in a chain
of simple steps using HMMs to perform automatic recognition of
basic movements in the contemporary dance.

Dance music analysis in general includes beat and tempo track-
ing, measure analysis, and rhythm and melody detection. In [4],
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Gao and Lee propose an adaptive learning approach to analyze mu-
sic tempo and beat based on maximum a posteriori (MAP) estima-
tion. Ellis describes a dynamic programming solution for beat track-
ing by finding the best-scoring set of beat times that reflect the esti-
mated global tempo of music [5]. An extensive evaluation of audio
beat tracking and music tempo extraction algorithms, which were
included in MIREX’06, can be found in [6].

In the context of multi-modal music and dance analysis towards
dance motion synthesis, Shiratori et al. propose a method, which
automatically detects the musical rhythm with beat and tempo, per-
forms a music rhythm assisted motion segmentation, and classifies
motion segments into the primitive motion units [7]. In an earlier
work [8], we have addressed the problem of multi-camera audiovi-
sual analysis of dance figures, where a correlation model between
body motion and music is extracted by unsupervised temporal seg-
mentation of the recurrent elementary audio and body motion pat-
terns. Later in [9], we have described an automatic music-driven
dance animation scheme based on supervised modeling of music and
dance figures in a simplified scenario, where a dance performance is
assumed to have only a single dance figure which is to be synchro-
nized with the musical beat.

In this present paper, we propose a complete framework for
modeling, analysis, annotation and synthesis of multi-modal dance
performances, which can handle more complex and realistic scenar-
ios. Specifically, we focus on finding mappings, which are in general
many-to-many, between audio patterns and dance figures for music-
driven dance choreography synthesis.

2. MUSIC-DRIVEN DANCE SYNTHESIS FRAMEWORK

The overall framework, as depicted in Figure 1, comprises of sev-
eral blocks that can be grouped into five main tasks: beat extraction
and measure localization; audio feature extraction; measure model-
ing and identification; dance figure labeling and N-gram modeling;
multi-modal dance figure estimation.

Fig. 1. Block diagram of the overall multi-modal dance performance
analysis-synthesis framework.



Fig. 2. Triangular overlapping windows centered at the locations
of semitone frequencies at different octaves during chroma features
extraction.

Audio is processed in two parallel tasks. One of the tasks ex-
tracts beat and meter information from audio to determine the mea-
sure boundaries whereas the other task extracts features from audio
as chroma features. The outputs of this task are used for measure
modeling and identification.

On the other hand, video is manually segmented into recurrent
dance figures and each dance figure is assigned with a label. The
sequence of dance figure labels is then used to calculate the N-gram
probabilities so as to capture the underlying figure-to-figure transi-
tion structures in the original dance choreography.

For measure modeling and identification, we train HMMs to
capture different rhythmic audio patterns that correspond to each
dance figure. The trained HMMs are then used in associating each
musical measure with a list of likely dance figure ids. The collec-
tion of these lists is finally used for dance figure estimation: Given
the collection of likely dance figures lists, we estimate a sequence
of figure ids based on figure-to-figure transition probability model
found by dance figure labeling and N-gram modeling. The following
sections explain the aforementioned five main tasks in more detail.

2.1. Beat Extraction and Measure Localization

A musical piece is a collection of measures and a measure is a time
segment that is defined as the number of beats in a given dura-
tion. Since dance figures are performed in synchrony with musical
rhythm, the boundaries of dance figures are expected to match those
of the musical measures. For this purpose, we check the accuracy of
manually marked dance figure labels by performing measure analy-
sis on music audio. We use one of the recent algorithms proposed by
Davies and Plumbey in [10] to extract beats and fine-tune measure
boundary locations.

2.2. Acoustic Feature Extraction

Chroma features can be used to characterize the melodic or harmonic
content of music since they represent musical audio by projecting
the entire spectrum onto 12 bins corresponding to the 12 distinct
semitones of the musical octave.

We extract chroma features by following an approach which is
very similar to the well-known mel-frequency cepstral coefficients
(MFCC) calculation. The difference is in how we choose the trian-
gular overlapping windows while calculating the chroma coefficients
from the magnitude spectrum of DFT of the audio signal. We basi-
cally center the triangular weight windows at the locations of semi-
tone frequencies at different octaves as shown in Figure 2. Then, we
take log-average of the harmonics of the calculated semitone coeffi-
cients, that gives us 12-bin chroma features.

2.3. Measure Modeling and Identification

In a dance performance, musical measures that correspond to the
same dance figure may exhibit variations and are usually a collection

Fig. 3. Left-to-right HMM structure.

of different rhythmic audio patterns. We employ HMMs to identify
and model the audio measure patterns corresponding to the dance
figures. Each HMM is trained over the collection of measures co-
occurring with the same dance figure. In other words, each HMM
computesP (F |a), i.e., probability of dance figureF givena, acous-
tic chroma features. Hence, we train as many HMMs as the number
of different dance figures that exist in the dance performance. Fig-
ure 3 shows the HMM structure we use for training models for the
collection of measures.

For measure identification part of this task, we use the trained
HMMs to assign figure ids to the sequence of measures extracted
from the input music audio. Instead of identifying each measure
with the label of the model that gives the best acoustic score, i.e.,
the highest likelihood probability of the model match, we create a
list of model labels with the highest-N acoustic scores. That is, we
generateN alternative transcriptions for each audio frame, i.e., mu-
sical measure. We then form a lattice, call itM, where the vertical
dimension represents the dance figures and the horizontal dimension
represents the frames of music (i.e., measures). The entries ofM are
the acoustic scores (i.e., likelihood probabilities) of the correspond-
ing models at the corresponding music frames. This lattice will also
be used for dance figure estimation.

2.4. N-Gram Dance Figure Modeling

The N-gram dance figure model provides us with some rules that
specify the structure of a dance choreography. For instance, two par-
ticular dance figures that never appear in consequence in the training
video do not either appear one after the other in the estimated synthe-
sis. We can also enforce a dance figure to always follow a particular
figure if it is also the case in the training video with the help of the
N-gram model. In this work, we pickN = 2 and create a bigram
probability matrix, call itA, for the input dance figure sequence to
capture the dependency relation of the current dance figure with the
previous one. More specifically, each entry inA, namelyaij , is the
probability of performing the figureFj after the figureFi.

2.5. Multi-modal Dance Figure Estimation

Using the bigram matrixA (computed as explained in Section 2.4)
together with the latticeM (constructed as explained in Section 2.3),
we estimate an output dance figure sequence by finding a path along
M in two different ways. In the first one, we follow thesingle best
path alongM, i.e., the label sequence that has the maximum total
likelihood. In the other one, we follow a path in which we pick the
likely figure, i.e., the figure that is randomly selected according to a
predefined distribution, at each music frame.

We employ a Viterbi algorithm to traverse through the columns
of M usingA. Recall that an entry inM, namelymij , represents
the likelihood of figureFi being performed at music framej. LetN
denote the number of rows inM (which is also the number of dif-
ferent dance figures);T denote the number of columns inM (which
is also the total number of measure segments); andφj(t) represent
the partial likelihood score of performing dance figureFj at frame
t along a single path that accounts for the highest partial likelihood



from frame1 to framet. This partial likelihood can be computed
efficiently using the following recursion:

φj(t) = max
i

{φi(t− 1)aij}mjt. (1)

At time t, each partial likelihood scoreφj(t − 1) is known for
all dance figuresFj , hence Equation 1 can be used to computeφj(t)
thereby extending the partial paths by one music frame. We also
define a structureψj(t) to keep track of the argument which max-
imizes Equation 1, for eachj and t, in order to retrieve the dance
figure sequence. The overall algorithm for finding the single best
dance figure sequence can be summarized as follows:

1. Initialization:

φj(1) = mj1, 1 ≤ j ≤ N

ψj(1) = 0, 1 ≤ j ≤ N
(2)

2. Recursion:

φj(t) = maxi{φi(t− 1)aij}mjt, 2 ≤ t ≤ T

1 ≤ j ≤ N

ψj(t) = argmaxi{φi(t− 1)aij}, 2 ≤ t ≤ T

1 ≤ j ≤ N

(3)

3. Termination:

Φ = maxi{φi(T )}
Ψ(T ) = argmaxi{φi(T )}

(4)

4. Path (dance figure sequence) backtracking:

Ψ(t) = ψΨ(t+1)(t+ 1), t = T − 1, T − 2, . . . , 1 (5)

Even though this procedure is designed for the first synthesis
scenario, i.e., picking thesingle best pathalongM, we can easily
modify it for the second synthesis scenario, i.e., picking alikely path
alongM. Instead of picking the maximum in Equation 1, we can
randomly pick one of the ‘likely’ dance figures according to a pre-
specified distributionP . It is also necessary to update the recurrence
relation forψj(t) accordingly.

3. EXPERIMENTS AND RESULTS

In this study, we investigate the Turkish folk dance,kasik1. Our au-
diovisual database is 36 minutes long and consists of 20 dance per-
formances with 20 different musical pieces. There are 31 different
dance figures (i.e.,N = 31) and a total of 1265 musical measure
segments (i.e.,T = 1265).

Table 1 provides the distribution of dance figures for different
musical pieces (denoted by MP1 through MP20 in the first column),
showing the many-to-many nature of the mapping between dance
figures and music measures. That is, there are different dance fig-
ures performed with the same musical piece and some dance figures
are performed with more than one musical piece. More importantly,
each row in the third column of Table 1 shows the expert-specified
group(s) of figures that are alternatives to one another for the corre-
sponding musical piece. For instance, dance figurea2 can be per-
formed in places whereb2 is performed, or vice versa, with the first
musical piece and the change of places between these two figures
creates a different but still acceptable choreography according to the

1Kasik meansspoon in English. The dance is named so because the
dancers clap spoons while dancing.

Table 1. List of figures for each musical piece and the corresponding
groups of exchangeable figures.

List of Figures Exchangeable Figure Groups
MP1 a2, b2, e2, f1, i1, i2, z1, z2{a2, b2, e2}; {b2, f1, z1}
MP2 b4, e4, h2, z2 {b4, e4, h2}
MP3 b2, e2, f3, h3, i1, i2, o1 {b2, e2, f3, h3, i1, i2, o1}
MP4 b4, e4, f2, h5, o, z1, z2 {b4, e4, f2, h5, o}
MP5 l
MP6 b2, e2 {b2, e2}
MP7 d, e2, n1, z2 {e2, n1}
MP8 b4, f2, h5, n1, n2, z1 {b4, f2, h5, n2}; {n1, z1}
MP9 e2, n1, o1, z1 {e2, o1}; {n1, o1}
MP10 b4, e4, h2, n2, z1 {e4, n2}; {b4, h2}
MP11 h5, l, p, x {h5, l, p, x}
MP12 h2, l, x {h2, l, x}
MP13 h3, h6, r, z1, z2 {h3, h6}; {r, h6}
MP14 b4, e4, f2, h5, n, o, z2 {b4, f2}; {n, o}
MP15 s, t, z2
MP16 f2, h5, n2, o, u, z1 {f2, h5, n2, o}
MP17 b2, e2, f3, n1, o1, z1 {b2, e2}
MP18 f1, h5, v, y {f1, h5, v}
MP19 b2, e2, f3, z2 {b2, e2, f3}
MP20 b2, e2, f3, n1, z1 {b2, e2}; {f3, n1}

expert. This information will be useful in evaluating the output of
the dance figure estimation task.

We follow 5-fold cross-validation procedure for measure mod-
eling and identification. We create an HMM for each “measure col-
lection” using four fifth of the audio data and use these models to
identify the remaining one fifth. We repeat this procedure five times,
each time using different parts of the audio data for training and test-
ing. This way, the entire audio data is identified with recognition ids
upon which we base our dance figure estimation task as mentioned
earlier in Section 2.5.

We define the following five assessment levels to evaluate each
figure labelFs in the synthesized figure sequence compared to the
respective figure labelFa assigned by the expert:

• L0: Fs is marked asL0 if Fs matchesFa.

• L1: Fs is marked asL1 if Fs does not matchFa, but it is
in one of the expert-specified exchangeable figure groups to-
gether withFa; i.e., (Fs, Fa) ∈ H, whereH = {(Fi, Fj) |
Fi 6= Fj ;Fi andFj are in one of the expert-specified ex-
changeable figure groups}.

• L2: Fs is marked asL2 if Fs does not matchFa, and it
is not in one of the expert-specified exchangeable groups
together withFa, either. However,Fs and Fa are per-
formed with the same musical piece; i.e.,(Fs, Fa) ∈ O \H,
whereO = {(Fi, Fj) | Fi 6= Fj ;Fi andFj are performed
with the same musical piece}.

• L3: Fs is marked asL3 if Fs andFa should not be per-
formed with the same musical piece, and yet, they are
exchanged due to a recognition error because the musi-
cal pieces with which they are actually performed have
similar rhythmic audio patterns; i.e.,(Fs, Fa) ∈ R \ O,
whereR = {(Fi, Fj) | Fi 6= Fj ; the entry(Fi, Fj) is non-
zero in the confusion matrix resulting from measure modeling
and identification}.

• L4: Fs is marked asL4 if it is not marked as one ofL0
throughL3.



Fig. 4. All assessment levels are put into a single confusion matrix.
The empty entries of this matrix correspond to assessment levelL4.

(a) Synthesis 1 (b) Synthesis 2

Fig. 5. The number of figures that fall into each assessment level for
the recognition and the synthesis label sequences in two synthesis
scenarios.

Figure 4 displays all assessment levels in a single confusion ma-
trix. We also associate a penalty score ranging from 0 to 4 with
the levelsL0 throughL4, respectively. Then, we calculate an over-
all penalty score for measuring the ‘goodness’ of the resulting dance
choreography. Recall that we estimate dance figure sequences in two
different ways, as explained in Section 2.5. For both synthesis sce-
narios, Figure 5 compares the number of figures that fall into each
assessment level both for the recognition and the synthesis label se-
quences. The penalty score for the output figure sequence of the first
scenario is 911 whereas it is 2033 for the output figure sequence of
the second scenario.

Looking at Figure 5 from another point of view, we see that
among all the assessment levels,L0,L1 andL2 are indicators of the
diversity of alternative dance figure choreographies rather than being
an indicator of error.L3 andL4, however, can be perceived as indi-
cators of error in the dance choreography synthesis process. In this
context, we see that around 94% of the synthesized figures fall into
one of the first three assessment levels in the first synthesis scenario.
This percentage drops to about 74% for the dance figure sequence of
the second synthesis scenario, which is still a high percentage of the
entire dance sequence.

In order to visualize the quality of the synthesized choreogra-
phies, we created demo videos according to the output dance
figure sequences. These demo videos are available online at
http://mvgl.ku.edu.tr/bodymotionanalysis/icassp10/.

4. CONCLUSIONS

In this paper, we propose a mapping from music measures to dance
figures based on correlations between dance figures and music mea-
sures as well as correlations between successive dance figures, in
terms of figure-to-figure transition probabilities. We, then, use this
mapping to synthesize a music-driven sequence of dance figure la-
bels. The output sequence of dance figure labels can be considered as
a dance choreography that is in synchrony with the driving audio sig-
nal. The experimental results show that the proposed framework is
successful at creatingacceptablealternative dance choreographies.

Possible applications of the proposed framework include: i) an
automatic dance tutor that evaluates recorded dance performances of
dance students, ii) synthesis of 3D dancing avatars for visual eval-
uation of synthesized choreographies, and iii) automatic synthesis
of dance performances from audio only for on-line games and other
entertainment applications, such as ‘Second Life’.
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