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Abstract

The widespread use of microblogging platforms like X (formerly
Twitter) during disasters provides real-time information to gov-
ernments and response authorities. However, the data from these
platforms is often noisy, requiring automated methods to filter
relevant information. Traditionally, supervised machine learning
models have been used, but they lack generalizability. In contrast,
Large Language Models (LLMs) show better capabilities in under-
standing and processing natural language out of the box. This
paper provides a detailed analysis of the performance of six well-
known LLMs in processing disaster-related social media data from
a large-set of real-world events. Our findings indicate that while
LLMs, particularly GPT-40 and GPT-4, offer better generalizability
across different disasters and information types, most LLMs face
challenges in processing flood-related data, show minimal improve-
ment despite the provision of examples (i.e., shots), and struggle
to identify critical information categories like urgent requests and
needs. Additionally, we examine how various linguistic features af-
fect model performance and highlight LLMs’ vulnerabilities against
certain features like typos. Lastly, we provide benchmarking results
for all events across both zero- and few-shot settings and observe
that proprietary models outperform open-source ones in all tasks.

CCS Concepts

« Computing methodologies — Natural language process-
ing; « Human-centered computing — Empirical studies in
collaborative and social computing.
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1 Introduction

Microblogging platforms like X (formerly Twitter) are vital dur-
ing large-scale disasters [30]. They facilitate real-time communica-
tion for the public to share firsthand experiences, report damage
to infrastructure, and most importantly, seek assistance [2, 23].
Moreover, local governments are increasingly leveraging these non-
traditional data sources to enhance their situational awareness and
quickly identify humanitarian needs, and inform their response
strategies accordingly [20, 28].

Despite their accessibility, data from social media platforms are
often highly noisy [13]. During large-scale disasters, the volume
of messages can reach millions per day, filled with irrelevant con-
tent and chatter [6]. This deluge makes it challenging for local
authorities to identify reports critical for humanitarian response.
Previous research has addressed this issue by developing super-
vised machine learning models that filter through the raw data
to identify relevant information [16, 24]. However, these models
typically struggle with generalizability across different disasters or
geographic locations due to the problems of domain shift [14, 19].
Techniques like domain adaptation or transfer learning have been
proposed to alleviate these challenges [11, 22]. Nonetheless, when
the categories of interest change, training new machine learning
models becomes necessary. This process requires human-labeled
data, which is time-intensive, and can slow down response efforts.

Large Language Models (LLMs) demonstrate a strong capabil-
ity to comprehend natural language and generalize across various
NLP tasks [32]. Despite numerous studies assessing LLMs’ effec-
tiveness with well-structured web data [34] and noisy social media
content, mainly in non-humanitarian context [15, 33], no previous
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research presents a thorough analysis of their robustness in pro-
cessing disaster-related social media data. In this paper, we present
a comprehensive analysis of social media data collected from 19 ma-
jor disasters across multiple countries using six well-known LLMs,
including GPT-3.5 [5], GPT-4 [1], GPT-40 [25], Llama-2 13B [29],
Llama-3 8B [10], and Mistral 7B [18]. We assess the effectiveness of
these proprietary and open-source LLMs in handling different dis-
aster types and information categories, and their performance with
data from both native and non-native English-speaking countries.
We also examine how various linguistic features influence LLMs’
performance. Additionally, our study provides benchmarking re-
sults for each of the 19 disaster events and evaluates the overall
model performance in both zero- and few-shot settings.

Our findings indicate that proprietary models (i.e., GPT-4 and
GPT-40) generally outperform open-source models (i.e., Llama-2
13B, Llama-3 8B, and Mistral 7B) on various tasks. However, GPT
models notably struggle with processing data from flood incidents.
Moreover, certain information types, such as requests or urgent
needs, consistently challenge all models, with all GPTs achieving
F1 below 0.60. Open-source models also display weaknesses in
handling classes like caution and advice and requests or urgent needs.
Additionally, we find that providing models with class-specific
examples does not generally enhance their performance.

The rest of the paper is organized as follows. We summarize the
related work in Section 2, describe our assessment methodology in
Section 3, and present results and discussions in Section 4. Finally,
we conclude the paper and provide a future work plan in Section 6.

2 Related Work

In crisis informatics literature, several studies introduced large-scale
crisis-related microblog datasets and presented baseline results us-
ing both classical machine learning algorithms (e.g., Random Forest,
Support Vector Machines, etc.) as well as deep learning models (e.g.,
RNNs, LSTMs, CNN, etc.) [17, 24]. Later, researchers undertook
an effort to consolidate available datasets and tasks for benchmark-
ing transformer-based models such as BERT [9], DistilBERT [27]
and RoBERTa [21], and showed that the transformer-based mod-
els typically outperform [4]. A more comprehensive crisis-related
dataset along with benchmarking results were presented in [3].
Likewise, a more recent study [31] presented a BERT-based ensem-
ble model, FF-BERT, for the classification of flash flooding messages.
Their evaluations examined various BERT-based ensemble models
on a specially curated dataset of 21,180 paragraphs of text. Mean-
while, [12] developed QuakeBERT and showed better performance
to assess physical and social impacts of an earthquake through
microblogs.

Previous research has shown that transformer-based models
outperform traditional ML algorithms on various metrics. Recent
efforts have focused on using more powerful LLMs across diverse
fields and tasks. For instance, LLMeBench has assessed LLMs on
multiple NLP tasks such as sentiment analysis and summariza-
tion [8]. Additionally, studies like [35] have applied LLMs to crisis-
related tasks, evaluating models like Mistral 7B [18] for their ability
to analyze disaster-related tweets. Further, Llama-2 and Mistral
have been fine-tuned for disaster response guidance, as presented
in [26]. This paper builds upon these findings by analyzing LLMs
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on a crisis-related dataset, exploring LLMs’ performance across var-
ious disaster types, information types, and the linguistic features
of the messages, to identify their capabilities and weaknesses.

3 Assessment Methodology

The increasing complexity and frequency of natural disasters world-
wide necessitate Al models, particularly LLMs, that can effectively
generalize across various types of disasters (e.g., floods, earthquakes,
etc.), languages (English vs. Non-English), and different types of
information shared on social media (e.g., warnings, urgent needs,
damage reports, etc.). We evaluate the performance of LLMs in
processing social media content from different types of disasters in
countries that use different languages. Additionally, we investigate
how open-source and proprietary models differ in performance
and assess the role of few-shot learning, where LLMs are provided
with examples, on their effectiveness. For this purpose, this paper
addresses the following four key questions.

(1) How do LLMs perform for different types of natural disasters
(e.g., floods, wildfires)?

(2) What is LLMs’ ability to interpret various types of social
media data during disasters?

(3) How do LLMs perform for countries where the native lan-
guage is not English?

(4) Do certain linguistic features or sentence structures signifi-
cantly impact LLMs performance?

3.1 Dataset and Models

To answer our research questions, we utilize HumAID [3] dataset
comprising 77,196 tweets from 19 different natural disasters that
occurred in 11 distinct countries (3 native English-speaking and
8 non-English-speaking) between 2016 to 2019. The tweets in the
dataset are labeled by paid crowdsourcing workers into ten distinct
information categories (acronyms): (1) caution and advice (CA)—(2)
sympathy and support (SS)—(3) requests or urgent needs (RUN)—(4)
displaced people and evacuations (DPE)—(5) injured or dead people
(IDP)—(6) missing or found people (MFP)—(7) infrastructure and util-
ity damage (IUD)—(8) rescue volunteering or donation effort (RVDE)—
(9) other relevant information (ORI)—and (10) not humanitarian (NH).
We drop the “other relevant information” class from our analysis as
it mainly contains general event-related information that does not
belong to other categories. The dataset is already split into train,
development, and test sets. We use the test split (N=15,160) for our
experiments. Figure 1 shows various distributions of our dataset.

Models. We select six well-known LLMs (three proprietary and
three open-source) for this study. We choose GPT-3.5 [5], GPT-4 [1],
and GPT-4o [25] from OpenAl as our proprietary models and Llama-
2 13B [29], Llama-3 8B [10] and Mistral 7B [18] as our open-source
models. All six models are known for their language understanding
capabilities across various NLP tasks.

3.2 Experimental Design

We evaluate the LLMs for the classification task in two settings:
zero-shot and few-shot. In the zero-shot setting, the models operate
without any class-specific examples, relying solely on their pre-
trained capabilities to perform the task. In the few-shot setting,
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Figure 1: Data distributions for (a) events, (b) information types, (c) disaster types, and (d) native/non-native English countries
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Figure 2: Performance (F1-scores) of LLMs across disaster types and few-shot settings

models receive examples for each class to improve class-specific
performance. For instance, in a three-shot experiment, we provide
the model with three carefully selected tweets per class from the
training set, totaling 30 examples for ten classes. For all experiments,
we set the temperature parameter to zero. We use the following
prompt across all experiments, except for Llama-2 and Mistral,
where we provide additional instructions to control for verbosity.

- Infrastructure and utility damage: Reports of any type of damage to infrastructure such
as buildings, houses,...

- Rescue volunteering or donation effort: Reports of any type of rescue, volunteering, or
donation efforts...

- Not humanitarian: If the tweet does not convey humanitarian aid-related information."

Tweet: {input tweet}
Category:

Prompt: “Read the category names and their definitions below, then classify the
following tweet into the appropriate category. In your response, mention only the
category name.

Category name: category definition
- Caution and advice: Reports of warnings issued or lifted, guidance and tips related to

4 Results and Discussion

4.1 Disaster Type Analysis

the disaster.

- Sympathy and support: Tweets with prayers, thoughts, and emotional support.

- Requests or urgent needs: Reports of urgent needs or supplies such as food, water, clothing,
money,...

- Displaced people and evacuations: People who have relocated due to the crisis, even for a
short time...

- Injured or dead people: Reports of injured or dead people due to the disaster.

- Missing or found people: Reports of missing or found people due to the disaster.

Our first research question examines how LLMs perform across
different types of disasters. We analyze data from 19 events, grouped
into four event types: 5 earthquakes, 7 hurricanes, 3 wildfires, and
4 floods. We present results for both proprietary and open-source
models and compare their performance in zero-shot and few-shot
(i.e., 1, 3, 5, and 10) settings.
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Figure 3: Performance (F1 scores) of LLMs across various information types (i.e., classes)

Figure 2(a) shows the macro F1-scores for GPT-3.5, GPT-4, and
GPT-4o0 across various few-shot settings. Notably, all models consis-
tently show high performance for earthquakes, with GPT-4 achiev-
ing a maximum F1-score of 0.76 in the 10-shot setting and GPT-3.5
a minimum of 0.63 in the zero-shot setting. Conversely, model
performances for floods consistently remain the lowest, with GPT-
40’s 1-shot performance reaching the highest F1-score of 0.70, and
GPT-3.5’s zero-shot the lowest at 0.55. The results for wildfires and
hurricanes are less consistent, though GPT-40 outperforms GPT-4
and GPT-3.5 in most cases. Surprisingly, increasing the number
of shots does not show plausible performance improvements for
all models. For GPT-3.5, there is a noticeable improvement from
the zero-shot to other few-shot settings. However, for GPT-4, the
performance from zero-shot to 3-shot remains nearly unchanged,
and unexpectedly degrades in the 5-shot setting, and then recovers
in 10-shot. Similarly, GPT-40 does not exhibit a consistent improve-
ment as the number of shots increases.

Figure 2(b) presents the F1-scores for the Llama-2 13B, Llama-3
8B, and Mistral 7B models across various few-shot settings, exclud-
ing the Llama-2 10-shot due to token limit constraints. Overall,
these open-source models perform less effectively than their pro-
prietary counterparts. Specifically, Mistral’s zero-shot achieves the
highest F1-score of 0.62 for earthquakes and also shows similar
results for hurricanes. Mistral consistently outperforms Llama-2
and Llama-3 across most cases. A notable observation is that the
zero-shot setting generally yields the best results for both models,
and adding more example shots does not significantly enhance per-
formance. Overall, we observe that the open-source models tend to
perform better for hurricanes as opposed to the proprietary models’
superior performance for earthquakes.

4.2 Information Type Analysis

Our second research question examines LLMs’ capabilities in pro-
cessing diverse types of information related to humanitarian re-
sponse and situational awareness during disasters. Our analysis
contains nine distinct information categories, detailed in Section 3.1,

with their cumulative distribution across all events depicted in Fig-
ure 1(b). While we conducted experiments across all six models
in all few-shot settings (except for Llama-2 10-shot), the following
results focus solely on the two top-performing models, GPT-40 and
Mistral, from the proprietary and open-source categories, respec-
tively. The complete set of results, including all six models, are
provided in Appendix A.

Figure 3(a) shows the class-wise macro F1-scores for GPT-40 mod-
els across all few-shot settings. These models consistently achieve
F1-scores above 0.80 in all few-shot settings for the classes rescue
volunteering or donation effort (RVDE), sympathy and support (SS)
and injured or dead people (IDP). In contrast, the requests or urgent
needs (RUN) and displaced people and evacuations (DPE) classes con-
sistently yield low performance, with F1-scores below 0.75, except
for higher shots (i.e., 5 and 10). Notably, the requests or urgent needs
(RUN) class exhibits significant variability in performance across
different shots. To understand why certain classes underperformed,
we conducted an error analysis using the confusion matrix shown
in Figure 4(a). We specifically examined random samples from the
requests or urgent needs (RUN) class which are confused with the
rescue volunteering or donations effort (RVDE) class. Our analysis re-
vealed that the model often confused general calls for volunteering
and donations with ongoing volunteering efforts. This confusion
led to a high rate of misclassification of tweets from requests or
urgent needs (RUN) as rescue volunteering or donation effort (RVDE)
(24%), as shown in Figure 4(a).

Figure 3(b) presents the class-wise F1-scores of Mistral 7B across
all few-shot settings. Mistral 7B notably under performs in the
categories requests or urgent needs (RUE) and caution and advice
(CA). Other instances of low performance include displaced people
and evacuations (DPE) in the 1-shot setting (F1=0.32), not human-
itarian (NH) in the 3-shot (F1=0.29), and most critically, requests
or urgent needs (RUE) in the 5-shot (F1=0.17). However, the model
performs relatively well with rescue volunteering or donation effort
(RVDE) and injured or dead people (IDP), especially in zero- and
1-shot scenarios. Overall, this open-source model lags behind its
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Figure 4: Confusion matrices for GPT-40 (left) and Mistral 7B (right) models under the zero-shot setting
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proprietary counterpart in information type classification perfor-
mance. Figure 4(b) shows the confusion matrix of Mistral 7B 0-shot,
which we used to perform an error analysis of mistakes made by the
model. We observed that open-source models also confuse requests
or urgent needs (RUE) with rescue volunteering or donations effort
(RVDE) due to the same reasoning where calls for volunteering
or donations were mistaken with the efforts for volunteering or
donations. Additionally, we analyzed errors made by the Mistral
zero-shot model in classifying caution and advice (CA) tweets. We
found that the presence of intensity descriptors such as “severe
earthquakes” or “category 5 hurricane” led the model to mistakenly
label tweets as infrastructure or utility damage (IUD). The results
from all the models are provided in Appendix A.
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4.3 Native vs. Non-Native English Analysis

Our third research question examines the performance of LLMs in
processing social media content from native-English-speaking ver-
sus non-English-speaking countries. Our dataset includes 11 events
from native-English-speaking countries and 8 events from non-
English-speaking countries. Figure 1(c) illustrates the distribution
of tweets across these two categories.

Figure 5 displays the F1-scores for all models, including both pro-
prietary and open-source. It is evident that all models achieve better
performance in processing data from native-English-speaking coun-
tries. Proprietary models show a marked advantage in understand-
ing data from these regions across all few-shot settings. However,



WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

053 055 029 0.096 0.0170,0073 0.11 | 05 034 O Special characters

028 0.097 0.016 0,011 0.15 0.029 035 0.46 Punctuations

03 0057 00120011 012 036 045 0 LLamA tokens
0.093 0.0076-0.04 0.019 022 0.19 Alphabets
2 Characters wtsp
027 0.2 Characters no_wtsp
024 01 0 Words
0.16 Small alphabets

d- Non ASCII

Heart emojis

- Flag emojis

ace emojis
Typos

Hashtags

Numbers
23 Mentions

031 032 033 026 0.1 0.092 0.017 0.013

- Capital alphabets

& O & o & N © @ & & o
& ' B FFFE I I S
CHIR I N O R AN e ¢ @ S
& &S S N 8 @ RIS RS
& &Y e NG SO NG
> WP Q@ @ A & « 2
1S > & & & &
& [ ) R
R 2 &
"’ o

Figure 7: Multicollinearity analysis of linguistic features

MsT10s8P T35 08pr3 515
0.8

MST 58 GPT3.53S

MST 58
GPT3.555

MST 38

GPT3.510S MST1S

MST 08 GPT4 0S8

MST 0S

LM3 108, GPT41S

LM3 108

LM3 58 GPT43S | \1a5g

LM33S GPT4 58

LM3 38

M3 18 GPT410S M3 1S

LM3 0S LM3 0S

LM2 58 GPT401S

LM2 58

GPT403S

GPT40 58
LM2 0SGPT40 10S

M2 38
m21s

M2 38
M2 1S

FALSE = TRUE (Hashtags at the Beginning)

(a) Hashtags strictly at the beginning

MsT 10s5PT3.5 08p13 5 15
08

LM2 0SGPT40 10S
FALSE == TRUE (Hashtags in the Middle)

(b) Hashtags in the middle

Muhammad Imran, Abdul Wahab Ziaullah, Kai Chen, and Ferda Ofli

Table 1: Logistic regression analysis for Mistral-7B zero-shot

coef  stderr Z P>|z| [0.025 0.975]
Intercept 1.3295 0.049 27.288 0.000 1.234 1425
Typos -0.0457 0.029 -1.586 0.113 -0.102  0.011
Special characters -0.0146  0.009 -1.691 0.091 -0.032  0.002
Characters -0.0037 0.000 -9.562 0.000 -0.004 -0.003
Numbers 0.0239 0.006 3.737 0.000 0.011 0.036
Hashtags 0.0308 0.013 2.291 0.022 0.004 0.057
Mentions 0.0702 0.017 4.185 0.000 0.037 0.103
Face emojis 0.1462 0.224 0.651 0.515 -0.294  0.586
Heart emojis 0.2719 0.143 1.905 0.057 -0.008 0.552

Table 2: Logistic regression analysis for GPT-40 zero-shot

coef  stderr Z P>|z| [0.025 0.975]
Intercept 1.6471 0.055 29.719 0.000 1.538 1.756
Typos -0.0575 0.033 -1.768 0.077 -0.121  0.006
Special characters -0.0115  0.010 -1.171 0.241 -0.031  0.008
Characters -0.0017 0.000 -3.974 0.000 -0.003 -0.001
Numbers 0.0125 0.007 1734 0.083 -0.002  0.027
Hashtags 0.0335 0.016  2.144 0.032 0.003  0.064
Mentions 0.0287 0.018 1590 0.112 -0.007  0.064
Face emojis 0.0996 0.254 0391 0.695 -0.399  0.598
Heart emojis 0.2166 0.164 1324 0.185 -0.104 0.537

msT 1058P T35 0%pr3 515
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Figure 8: Impacts of hashtag positioning on LLMs performance (macro F1-scores). LM2=Llama-2 13B, LM3=Llama-3 8B,

MST=Mistral 7B

their performance drops when processing data from non-English-
speaking countries, although they still outperform open-source
models for the same category. Furthermore, in the non-English-
speaking category, GPT-40 zero-shot setting leads with an F1-score
of 0.76, while Mistral in the 5-shot setting tops among open-source
models with an F1-score of 0.62. The remaining open-source models
generally score below 0.60, which is a surprising finding.

4.4 Linguistic Feature Analysis

Our fourth research question explores whether various linguis-
tic features, such as word count, hashtag count, and emoji usage
in tweets, affect the performance of LLMs. Previous studies have
shown that such features significantly influence the performance
of traditional machine learning and deep learning models [7]. We
aim to determine if this holds true for LLMs, as well. We defined 17
linguistic features and analyzed their frequency distributions across
all classes. Figure 6 presents a heatmap of z-scores for these features’
presence in each class, revealing notable patterns. For instance, the
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Figure 9: F1-scores for all proprietary and open-source models for 19 events across all k-shot settings

injured and dead people (IDP) class has a high z-score for numbers,
likely due to the prevalence of numerical data in such messages
reporting casualties or injured people due to the disaster event.
Similarly, the sympathy and support (SS) class shows a high value
for heart emojis, reflecting emotional expressions in such tweets.
We observed that tweets discussing requests and urgent needs often
include more mentions of other user accounts, particularly NGOs
and official accounts.

Next, we perform a logistic regression analysis to ascertain how
different linguistic features affect model performance. To avoid the
undesirable effects of multicollinearity, we exclude highly corre-
lated linguistic features like character, word, and alphabet counts as
illustrated in Figure 7 and work with a reduced set of features as our
independent variables and consider the binary (correct/incorrect)
validation of the predicted class labels with the ground truth as
our dependent variable. Table 1 summarizes the analysis results
for Mistral zero-shot. We see that numbers, hashtags, mentions,
face, and heart emojis have positive correlations with model perfor-
mance whereas character, special character and typo counts have
the opposite effect. For example,—with a relatively small but statis-
tically significant coefficient—, increasing character counts tends
to negatively impact model performance. On the contrary,—again
with relatively small but statistically significant coefficients—, num-
ber, hashtag, and mention counts play positive roles in improving
predictive performance. According to Table 2, these observations
also hold for GPT-40 zero-shot model with the exception that coeffi-
cients for number and hashtag counts are not statistically significant
as before. In both cases, it is notable that face and heart emojis have
relatively larger coefficients and show more prominence in the
regression analysis but lack statistical significance.

Hashtag Positioning Impacts. Next, we investigate whether the
placement of hashtags within messages affects LLM performance.
We categorize messages into three groups: (i) messages with hash-
tags only (strictly) at the beginning, (ii) messages with hashtags

in the middle, and (iii) hashtags only (strictly) at the end. Figure 8
presents F1-scores for each scenario in separate radar charts.

Interestingly, we observed that hashtags placed in the middle of
messages frequently result in higher error rates, as illustrated in Fig-
ure 8(b) with the brown circle. Most probably, these errors stem from
the disruption in sentence structure caused by mid-sentence hash-
tags, which can confuse models by introducing unexpected breaks
or context shifts. This phenomenon appears more pronounced in
proprietary models compared to open-source models. Specifically,
proprietary models such as GPT-3.5 (in all shot settings except
zero-shot), GPT-4, and GPT-4o consistently exhibited difficulties in
accurately interpreting messages with mid-sentence hashtags. The
models often misclassify or overlook critical context surrounding
the hashtag, leading to erroneous predictions. Additionally, there is
anotable difference in performance for GPT-4, GPT-40, and Llama-3
zero-shot and Mistral 10-shot configurations when hashtags are
exclusively at the beginning of messages. Conversely, the position-
ing of hashtags at the end of messages does not significantly affect
LLMs’ performance.

4.5 Event-wise and Overall Performance

In addition to our main analyses addressing the specified research
questions, we conduct two additional experiments to assess LLMs’
performance for individual events and their overall performance.
These results also help benchmark the LLMs against this dataset.
Figure 9 shows the event-wise F1-scores for both proprietary and
open-source models across various few-shot settings. Notably, the
proprietary GPT models consistently outperform the open-source
Llama and Mistral models. Among the proprietary models, all few-
shot configurations of GPT-4 yield superior results compared to
any few-shot setting of GPT-3.5 and GPT-4o. Specifically, GPT-4’s
zero-shot and 3-shot settings perform comparably and exceed the
performance of its 5-shot and 10-shot settings. Interestingly, GPT-
40 appears to face challenges in this experiment, particularly with
hurricane and wildfire events. However, for earthquakes, GPT-40’s
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performance is comparable to or slightly below that of GPT-4. For
GPT-3.5, the one-shot variant stands out as the most effective across
the majority of events.

The event-wise results for open-source models (Figure 9) high-
light Mistral’s zero- and one-shot settings as the most effective.
In most cases, adding examples—increasing the number of shots—
does not typically enhance the model’s performance. Notably, larger
number of shots, such as 5- or 10-shot, introduce additional tokens
to the prompt, which may actually confuse the model rather than
help it. However, both Llama 2 and 3 showed underwhelming perfor-
mance across most events, with the exception of a few earthquake
cases. In some instances, the Llama models scored as low as 0.27
(Sri Lanka floods) and 0.33 (Cyclone Idai).

Next, we evaluate the overall performance of LLMs on the en-
tire data, including all events, information types, and language
variations. Figure 10 shows the F1-scores for both proprietary and
open-source models across all shots and the SOTA supervised base-
line (i.e., RoBERTa F1=0.78) as we report in [3]. It is clear that
GPT-4o0 consistently outperforms all other LLMs in all configura-
tions, though it does not outperform the baseline. GPT-4 ranks
as the second-best overall, while Llama-2 and Mistral generally
underperform across all shots. Notably, there is no consistent trend
in performance with the addition of more shots, with the exception
of specific instances such as GPT-3.5’s progression from zero to
various few-shots, and Llama-2’s improvement from 3- to 5-shot set-
tings. We summarize the experimental results, including accuracy,
precision, and recall of all the models across all shots in Table 3.

5 Ethical Considerations

The datasets used in this study consist of publicly available tweets
posted by individuals or organizations during various natural dis-
asters. The data was collected in strict adherence to the terms and
conditions set forth by the Twitter (now X) API to ensure ethical
compliance. To safeguard individuals’ privacy, any personally iden-
tifiable information, including names, addresses, phone numbers,
or other sensitive details, was systematically anonymized before
data processing. Moreover, no attempts were made to infer or store
additional demographic or personal information about the users.

6 Conclusion and Future Work

We presented a comprehensive evaluation of prominent large lan-
guage models in processing social media data from 19 major natural
disasters across 11 countries, including 8 non-native and 3 native
English-speaking regions. Our findings highlight varying strengths
and limitations of LLMs in managing diverse disaster types, in-
formation categories, and linguistic complexities. Specifically, the
models demonstrated notable difficulties with flood-related data
and frequently misclassified critical information categories such
as requests and urgent needs and caution and advice. Furthermore,
our analysis identified key factors such as message length, typo-
graphical errors, and the presence of special characters as signifi-
cant challenges that impair model performance. Importantly, we
observed that providing few-shot examples yielded limited per-
formance gains for most models. This could be due to the high
variability in social media content, even from the same class. Fi-
nally, we provided benchmarking results, aiming to inform further
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Figure 10: Overall performance of proprietary and open-source
models across k-shot settings (k={0, 1, 3, 5, 10}) and RoBERTa

(F1=0.78) as a supervised baseline [3].

Table 3: Comparison of LLMs’ performance in terms of F1-score,

Accuracy, Precision, and Recall

#Shots LLM Model  Fl-score Accuracy Precision Recall

GPT-4 0.750 0.785 0764 0.747

GPT-do 0.762 0.801 0771 0.760

ot | GPT35 0.661 0.686 0729 0.644
O-shot 1 lama-213B  0.562 0.554 0.694 0522
Llama-38B  0.534 0.540 0621 0547

Mistral 7B 0.628 0.697 0732 0582

GPT-4 0.743 0.769 0777 0728

GPT-d40 0.755 0.80 0763 0.760

Lehop | GPT35 0.699 0.748 0733 0675
Llama-2 13B  0.522 0.522 0655  0.559
Llama-38B  0.507 0.520 0603 0532

Mistral 7B 0.598 0.682 0702 0.563

GPT-4 0.748 0.760 0779 0728

GPT-do 0.748 0.787 0766 0.748

sepop  COPT35 0.681 0.729 0718  0.666
Llama-2 13B 0471 0.430 0660  0.508
Llama-38B  0.496 0518 0620 0551

Mistral 7B 0.543 0.592 0652 0526

GPT-4 0.703 0.726 0756 0.685

GPT-do 0.747 0.784 0759 0758

ot GPT35 0.666 0.715 0719 0638
Sshot ) ma-213B 0.504 0.457 0644 0513
Llama-38B  0.481 0.498 0623 0545

Mistral 7B 0.516 0513 0614 0531

GPT-4 0.734 0.730 0779 0.702

GPT-40 0.737 0.769 0744 0764

10-shot GPT-3.5 0.680 0.729 0721 0.660
Llama-38B 0457 0.463 0580 0512

Mistral 7B 0.521 0.556 0599 0523

research into LLMs’ vulnerabilities and assist in developing more
robust models for disaster information processing.

Future work: We aim to extend our qualitative analyses to un-
derstand the reasons behind LLMs’ underperformance for specific
disaster types and information categories, with a focus on identify-
ing actionable solutions to address these issues. Beyond text-based
models, our future research will explore the potential of large vision-
language models in processing multimodal social media data, such
as combining textual and visual content, to provide a more holistic
understanding of disaster events. This exploration is particularly
relevant for enhancing emergency management systems in complex
real-world scenarios.
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A Class-wise results

Tables 4 and 5 present the class-wise results across various shots for
proprietary models (GPT-3.5, GPT-4, and GPT-40) and open-source
models (Llama-2 13B, Llama-3 8B, and Mistral 7B), respectively.
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Table 4: F1 Scores for proprietary models (GPT-3.5, GPT-4, and GPT-40) across classes and k-shots

Class \ GPT-3.5 \ GPT-4 \ GPT-40

|z 1S 38 58 10S| zS 1S 35 55 10S| ZS 1S 35 55 108
Caution and advice 0.65 0.84 089 086 087|091 089 090 088 089|081 090 0838 086 0.84
Rescue volunteering 0.89 095 094 094 095|092 092 090 088 0838|091 093 093 091 0.89

Requests or urgent needs | 0.68 0.58 0.58 0.50 0.55 | 0.71 0.66 0.74 0.68 0.73 | 0.70 0.75 0.75 0.81 0.85
Infrastructure damage 091 0.77 0.79 078 0380 | 085 079 080 0.70 0.75 | 0.84 0.84 0.79 0381 0.81
Sympathy and support 085 083 0.79 079 079|091 089 088 090 088 091 091 091 090 0.90
Injured or dead people 080 0.88 0.86 0384 0383|091 088 091 0.85 085|094 094 093 093 0091

Displaced people 083 0.74 0.68 0.62 066 |09 074 078 0.62 081|088 0.73 074 074 0.80
Missing or found people | 0.87 0.81 0.86 0.82 0.85| 0.85 0.88 0.84 0.83 0.81 | 0.82 0.88 0.89 0.90 0.93
Not humanitarian 046 0.78 0.72 0.77 077 | 070 088 0.80 091 081|091 086 088 0388 0.87

Table 5: F1 Scores for open-source models (Llama-2 13B, Llama-3 8B, and Mistral 7B) across classes and k-shots

Class ‘ Llama-2 13B ‘ Llama-3 8B ‘ Mistral 7B

| zs 1S 38 55 10S| ZS 1S 38 55 10S| ZS 1S 3S 55  10S
Caution and advice 0.61 091 082 047 - |052 062 062 058 063|036 050 071 0388 036
Rescue volunteering 0.75 053 035 042 - [050 047 050 044 035|095 096 087 0.65 0.82
Requests or urgent needs | 0.73 078 0.84 083 - | 034 028 027 025 021|056 055 066 070 0.63
Infrastructure damage | 0.77 059 044 064 - |0.54 046 034 024 030|083 073 045 054 053
Sympathy and support | 0.90 0.93 092 090 - | 075 070 074 073 064|083 083 079 086 0.63
Injured or dead people | 0.66 0.75 0.65 082 - | 079 078 077 075 074|088 079 060 049 0.52
Displaced people 058 020 024 047 - |036 034 022 027 030|069 036 046 066 0.68
Missing or found people | 0.70 0.78 0.80 079 - | 047 034 048 051 044 | 064 069 065 075 0.77
Not humanitarian 034 073 069 056 - [053 057 053 057 050|069 086 087 0.60 0.89
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