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ABSTRACT

Approaches for effectively filtering useful situational awareness information posted by eyewitnesses of disasters,
in real time, are greatly needed. While many studies have focused on filtering textual information, the research
on filtering disaster images is more limited. In particular, there are no studies on the applicability of domain
adaptation to filter images from an emergent target disaster, when no labeled data is available for the target disaster.
To fill in this gap, we propose to apply a domain adaptation approach, called domain adversarial neural networks
(DANN), to the task of identifying images that show damage. The DANN approach has VGG-19 as its backbone,
and uses the adversarial training to find a transformation that makes the source and target data indistinguishable.
Experimental results on several pairs of disasters suggest that the DANN model generally gives similar or better
results as compared to the VGG-19 model fine-tuned on the source labeled data.
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INTRODUCTION

The increased popularity of social media websites has transformed the way in which affected populations
communicate with response organizations during and following major disasters. Victims of several recent hurricanes,
including Hurricane Harvey, Hurricane Irma and Hurricane Florence, have turned to social media to request help
and assistance, as emergency hotlines were sometimes unreachable due to the high volume of calls (Rhodan 2017;
MacMillan 2017; Frej 2018). According to Rhodan (2017), a woman and two children were rescued during
Hurricane Harvey after the woman posted a desperate message for help on Twitter: ‘I have 2 children with me and
tge [sic] water is swallowing us up. Please send help.’ Similarly, an image posted on Twitter, which showed ‘elderly
residents sitting in greenish flood water,’ raised awareness of a nursing home situation and resulted in urgent help
being sent to the nursing home (Rhodan 2017).
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While social media can help increase situational awareness, inform rescue operations, and save lives, its value is
highly unexploited by response teams, in part due to the lack of tools that can help filter actionable information
from the big data posted during disasters. A recent study (Villegas et al. 2018) reported that during Hurricane
Harvey, FEMA missed 46% of the critical damage information posted by affected individuals on Twitter, and thus
many areas heavily impacted by the hurricane were missed from the original damage estimates provided by FEMA.
Similarly, Kryvasheyeu et al. (2016) used Hurricane Sandy tweets, and Enenkel et al. (2018) used Hurricanes
Harvey and Irma filtered, geo-located tweets to show that rapid early damage assessment can be facilitated by social
media. Among others, the above-mentioned studies (Kryvasheyeu et al. 2016; Villegas et al. 2018; Enenkel et al.
2018) suggest that tools that can identify critical social media information in real-time are greatly needed, and
should be incorporated into the operational decision-making pipelines of response organizations.

To meet these requirements, many studies have focused on the design of machine learning tools to identify relevant,
informative, actionable situational awareness information in social media (Vieweg et al. 2010; Sen et al. 2015;
Huang and Xiao 2015; Imran et al. 2016). More recently, deep learning approaches have also been proposed in
the context of identifying information useful for disaster response on social media (Caragea et al. 2016; Nguyen,
Al-Mannai, et al. 2017; Neppalli et al. 2018; Derczynski et al. 2018; Aipe et al. 2018), and have been generally
shown to produce better results than the traditional supervised learning approaches. As opposed to research on
classifying disaster tweets, research on classifying and retrieving useful information from disaster images is still in
its early stage, although recent studies have suggested that useful social awareness information can be found in social
media images (Bica et al. 2017; Lagerstrom et al. 2016; Alam, Ofli, et al. 2018b). To advance the state-of-the-art in
this area, Alam, Ofli, et al. (2018) and Mouzannar et al. (2018) recently published multi-modal datasets, consisting
of both tweet text and images. Furthermore, Mouzannar et al. (2018) developed a deep learning approach to identify
damage images in their dataset. Related to this, Nguyen, Ofli, et al. (2017) proposed to classify disaster images
according to damage severity using fine-tuned convolutional neural networks, and X. Li et al. (2018) proposed a
method based on class activation mapping (CAM) to localize and quantify damage in social media images posted
during disasters.

While significant contributions have been made in terms of developing traditional and deep learning models to
identify useful situational awareness information in social media, most of the existing approaches are supervised
learning approaches, which require labeled data to train accurate models. It is unrealistic to assume that labeled
data is readily available in the early hours of a disasters, when help may be most needed. Domain adaptation or
transfer learning approaches (Pan and Yang 2010), which make use of labeled data from a prior disaster (called
source) and unlabeled data from the emergent disaster (called target), have been shown to lead to better results as
compared to supervised classifiers learned from a prior disaster, when used for target tweet classification (H. Li
et al. 2017; Mazloom et al. 2018). Domain adaptation has been used extensively for image classification using deep
neural networks (Wang and Deng 2018), including social media image classification by fine-tuning a pre-trained
deep neural network, such as VGG-16 or VGG-19 (Simonyan and Zisserman 2014), as in (Nguyen, Ofli, et al. 2017;
X. Li et al. 2018). However, domain adaptation from a source disaster to a target disaster has not been explored in
the context of classifying social media images posted during and shortly after a disaster. Thus, the goal of this study
is to gain insights into the usefulness of transferring knowledge from a source disaster to a target disaster, when
classifying images according to damage severity.

We propose to use an approach called Domain-Adversarial Neural Network (DANN) introduced by Ganin et al.
(2016). The DANN approach is based on domain-adversarial training, which reduces the shift between the source
and target domains, by making the source and target feature representations indiscriminate, while the source feature
representation is discriminative for the source classification task. Experimental results on images from several
source-target disaster pairs have shown that the DANN approach, which uses source labeled data and unlabeled
target data, can improve the classification accuracy obtained with a deep neural network trained only from source
labeled data, especially if the two disasters are of different type (e.g., a hurricane and an earthquake).

The contributions of the paper are as follows:

• We have adapted the DANN model by combining it with VGG-19 to benefit from the VGG-19 extensive
training.

• We have performed extensive experiments on several pairs of disasters, and studied the ability of the adapted
model to transfer information about image damage from a source disaster to a target disaster.

• We have performed visualization of the original and transformed representations of the source versus target
images to gain insights into the results of the model.
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The rest of this paper is organized as follows: We discuss “RELATED WORK” in the section following the
“INTRODUCTION”. Details of the domain adversarial neural network are presented in the “BACKGROUND
AND APPROACH” section. The experimental setup and results are described in “EXPERIMENTAL SETUP” and
“EXPERIMENTAL RESULTS” sections, respectively. Finally, we conclude the paper, discuss the limitations of our
work, and also several ideas for future work.

RELATED WORK

Domain adaptation on image data has received much attention in recent years (Gopalan et al. 2011). In particular,
approaches based on Convolutional Neural Network (CNN) have been very successful, for example, Siamese
networks (Bromley et al. 1993) such as the one proposed in (Long et al. 2015). Approaches based on reconstruction
have also become popular. For example, Ghifary et al. (2016) applied image reconstruction on target unlabeled
data by using a CNN autoencoder. Together with the reconstruction model, a supervised model was also trained
on the source labeled data. The resulting model was used to retrieve information from target data. Ganin et al.
(2016) applied adversarial training to adapt data from a source domain to a target domain. The adversarial training
was originally used to generate synthetic images (Goodfellow et al. 2014). In domain adaptation, the adversarial
training learns a data transformation which makes the source and target data to have similar distributions. Then, the
classifier trained on the transformed source data can be used on the target data.

In disaster response, domain adaptation is a desirable approach, as it enables fast reaction when a disaster occurs.
Several studies have applied domain adaptation approaches on disaster related text data. For example, H. Li et al.
(2017) used the iterative Self-Training (Yarowsky 1995) strategy, with Naive Bayes as a base classifier, to perform
domain adaptation for identifying tweets related to a disaster. Domain adversarial training has been applied to
disaster tweet classification (Alam, Joty, et al. 2018). Compared to the research on disaster tweet classification,
research on disaster image classification and analysis is more limited as of now. Bica et al. (2017) performed a
visual analysis of two 2015 Nepal Earthquakes, and found a positive correlation between damage severity and
the number of geotagged images posted by eyewitnesses of the earthquakes. Lagerstrom et al. (2016) studied the
ability of machine learning approaches to identify Twitter images posted during a bush fire emergency situation,
and concluded that the fire images can be identified with high accuracy.

More recently, Alam, Ofli, et al. (2018) and Mouzannar et al. (2018) recently published text and image multi-modal
datasets, which have the potential to advance the state-of-the-art in disaster image analysis. Furthermore, Mouzannar
et al. (2018) developed a deep learning approach to classify images based on damage. Similarly, Nguyen, Ofli,
et al. (2017) used an approach based on CNNs to classify disaster images according to damage severity. Given that
damage is a concept quantifiable on a continuous scale, X. Li et al. (2018) used the CAM approach to localize and
quantify damage in disaster images. While these studies represent important steps towards disaster images analysis
in real time, they assume target labeled data is available. Domain adaptation approaches, while greatly needed, have
not been studied until now.

BACKGROUND AND APPROACH

In this section, we introduce some background on image classification, and describe the approach used to perform
domain adaptation from a source disaster to a target disaster. Figure 1 shows an overview of the model used, which
has the VGG-19 network (Simonyan and Zisserman 2014) as its backbone, and uses the domain-adversarial training
(Ganin et al. 2016) to reduce the domain shift.

Adapted VGG-19 Architecture

Convolutional neural networks (CNN) have achieved impressive results in image analysis and computer vision. Many
network architectures have been proposed for image classification in recent years, including AlexNet (Krizhevsky
et al. 2012), VGG-19 (Simonyan and Zisserman 2014), ResNet (He et al. 2016). ResNet and VGG-19 models have
won the ImageNet competition1, which proves that these models have good performance on image classification.
We choose VGG-19 as the backbone for our model given that this network is relatively simpler than ResNet.

As can be seen in Figure 1, VGG-19 consists of 16 convolutional layers and 3 fully connected layers. A convolutional
layer can be seen as a feature extractor, as it extracts image fragments (e.g., edge) that are important with respect to
the classification task, while ignoring noisy fragments which do not contribute to classification. Each convolutional
layer is accompanied by a non-linear ReLU activation. The 5 max pooling layers shown in the figure are used to
achieve dimensionality reduction and further filter out noise. The standard VGG-19 has two fully connected layers

1http://image-net.org/challenges/LSVRC/
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Figure 1. Overview of the Model Architecture.

with dimension 4096, and one softmax layer with dimension 1000. The softmax layer has dimension 1000 because
VGG-19 was originally trained for a 1000-class object classification task. However, we aim to adapt VGG-19
to classify disaster images in two classes: damage or no-damage, and thus, we have changed the dimension of
the softmax layer from 1000 dimensions to 2 dimensions. The VGG-19 model includes more then 130 million
parameters that need to be learned. It is unfeasible to learn all those parameters from scratch. Instead, we have used
the pre-trained VGG-19 model to initialize the parameter values in our network for all, but the last fully connected
layer (as that layer has a different dimension), and subsequently fine-tuned all parameters of the model based on our
disaster data. Given that the pre-trained VGG-19 model is learned from millions of images, it is known to generalize
well to other sets of images in terms of informative features that it extracts. Thus, we can fine-tune it to our specific
classification task with a relatively small number of images.

Domain-Adversarial Neural Networks

Domain Adaptation is a machine learning setting, where data from a source domain, Xs , is used to predict a target
domain, Xt , under the assumption that the source and target domains have different distributions (a.k.a., domain
shift), but share some similar patterns. In unsupervised domain adaptation, the labels of the source domain data,
denoted as ys , are available, while the labels of the target domain data, yt , are not available. The task is to learn a
classifier for the target data, using the labeled source data and the unlabeled target data. A standard approach to
domain adaptation is to transform the source and target data representation (a.k.a., feature adaptation), so that the
source and target distributions become indistinguishable (Pan and Yang 2010). More precisely, one needs to identify
a transfer function, T(X), to transform the original source, Xs , and target, Xt , domain data into T(Xs) and T(Xt ) data
which have similar distributions. Intuitively, a classifier learned on T(Xs) with labels ys should presumably have a
good predictive performance on T(Xt ). Thus, the domain adaptation problem is reduced to finding the transfer
function T(X). Inspired by the generative adversarial network (GAN) proposed by Goodfellow et al. (2014), Ganin
et al. (2016) designed a Domain-Adversarial Neural Network (DANN), which includes a component that explicitly
aims to reduce the shift between a source and a target.

We have adapted the DANN model proposed by Ganin et al. (2016) by combining its adversarial training with the
VGG-19 network, to take advantage of the extensive training of VGG-19. The architecture of the adapted DANN
network, is shown in Figure 1. As can be seen in Figure 1, our model includes three components: 1) a transfer
network, denoted by T , which enables the transfer of information from the source to the target, by reducing the shift
between the two domains (in our case, between the two disasters); 2) a domain discriminative network, denoted by
D, which identifies if an input image is from the source or from the target domain; 3) a prediction network, denoted
by P, which is used to predict if an image is in the damage category or in the no-damage category. The input for the
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transfer network, T , consists of images from either source or target domain. After applying the transformation T to
the source or target images, the transformed images are classified as source or target by the discriminative network
D, and classified as damage or no-damage by the predictor network P. Informally, the idea of the adversarial
training is to train a good domain discriminant to separate the source and target domains, and at the same time, train
a transfer network to make the two domain look so similar, that even a good discriminant network can not separate
them. The predictor network, P, is trained on the transformed source data and then used to classify the transformed
target data.

As can be seen in Figure 1, the transfer network, T(X), consists of the first 16 convolutional/pooling layers of
VGG-19, together with the first fully connected layer in VGG-19. The domain discriminative network, D(X), and
prediction network, P(X), have similar architectures, which are equivalent to the last two fully connected layers of
VGG-19. Specifically, D(X) has one fully connected layer with dimension 4096, and one fully connected softmax
layer with two dimensions, corresponding to the source (S) and the target (T) domains, respectively. Similarly, P(X)
has one fully connected layer with dimension 4096, and one fully connected softmax layer with two dimensions,
corresponding to damage and no-damage categories, respectively.

DANN Model Training

The DANN is trained by minimizing the total loss of the model shown in Figure 1. To define the total loss function,
we first define the following cross-entropy loss functions, corresponding to the three sub-networks in our model:

Lprediction = min
P
L(ys, P(T(x))), where ys is the true class label of the transform instance x.

Ldomain = min
D
L(T DL,D(T(x))), where T DL is the true domain label, i.e., S for source, and T for target.

Ltrans f er = min
T
L(FDL,D(T(x))), where FDL is a fake domain label, i.e., S for target, and T for source.

The total loss is defined as follows: Ltotal = Ldomain + Ltrans f er + Lprediction

Let θD denote all the parameters in D(X), θT denote all the parameters in T(X), and θP denote all the parameters in
P(X). At each training step (a pass through the source data), we first compute each loss, Ldomain, Ltrans f er , and
Lprediction, and update the parameters accordingly. However, we notice that the discriminant loss function always
‘defeats’ the transfer loss function. To account for this, we compute the transfer loss function two times in each step,
as suggested in (Bang and Shim 2018). Then, the transfer and domain losses become almost equal, which means
the transfer function reduced the difference between the two domains to an extent that the discriminant function can
not separate the domains. The update rules are shown below:

θD ←− θD − µ
∂Ldomain

∂θD
(1)

θT ←− θT − µ
∂Ltr ans f er

∂θT
(2)

θT ←− θT − µ
∂Lpredict ion

∂θT
(3)

θP ←− θP − µ
∂Lpredict ion

∂θP
(4)

where µ is the learning rate. We use the stochastic gradient descent (SGD) to optimize the parameters. The
pseudocode for training the DANN network using SGD is shown in Algorithm 1. Parameter updates are performed
for each batch sampled from source. Corresponding to a batch from source of size m (line 5 in the algorithm),
which is used to train the prediction network, the algorithm also creates a batch that has half (i.e., m/2) source
instances and half target instances (line 6 in the algorithm). The source/target batch is used to train the transfer and
domain networks.

EXPERIMENTAL SETUP

In this section, we present the experimental setup, including the dataset used, cross-validation setup, baselines, and
implementation details. The experiments conducted in this study were designed to answer the following research
questions: (1) How does the DANN model work for adaptation between disasters of the same type (e.g., two
earthquakes) versus adaptation between disasters of different types (e.g., an earthquake and a hurricane)? (2) Does
the source-target feature adaptation through DANN give better results as compared to the direct source adaptation
from VGG-19? (3) How do the results of the DANN model compare to the results of a VGG-19 network adapted
based on data from the target domain itself?
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Algorithm 1 DANN Training Using SGD

Input: Datasets S = {(xsi , y
s
i )}

ns
i=1 (where ns represents the number of instances in the source S) and

T = {xti }
nt
i=1 (where nt represents the number of instances in the target T)

Output: θT , θP, θD

1: θT ← pre-trained VGG-19 weights
2: θP, θD ← random initial weights
3: Step k = 0
4: for k from 1 to steps do
5: for each source batch {(xsi , y

s
i )}

m
i=1 do

6: Sample source/target batch (xsj , xtj )
m/2
j=1

7: T DLj = 1 if xj ∈ source, 0 otherwise
8: FDLj = 0 if xj ∈ source, 1 otherwise
9: Compute the loss Ldomain

10: Update θD using Equation (1)
11: Compute the loss Ltrans f er

12: Update θT using Equation (2)
13: Compute the loss Ltrans f er

14: Update θT using Equation (2)
15: Compute the loss Lprediction

16: Update θT and θP using Equations (3) and (4)

Table 1. Disaster class distribution, together with the total number of labeled images in each disaster.

Class Nepal Ecuador Ruby Matthew
Earthquake Earthquake Typhoon Hurricane

Damage 11,183 933 433 204
No-damage 7,919 791 400 127
Total 19,102 1,724 833 331

Dataset

We used the disaster image dataset published by Nguyen, Alam, et al. (2017) in our experiments. The dataset
contains images from four disasters, specifically Nepal Earthquake, Ecuador Earthquake, Ruby Typhoon, and
Matthew Hurricane. In the original dataset, there are three damage classes: severe, mild, and none. However,
Nguyen, Alam, et al. (2017) suggested that the task of discriminating between mild and severe damage is very
subjective, and there is significant overlap in the dataset between the two classes. Therefore, we combine the classes
severe and mild into one class called damage. Our goal is to identify images that include damage and separate them
from images that do not show any damage. Table 1 shows the total number of images in each disaster, and also the
class distribution for each disaster.

Setup

Given the four disasters in our dataset, we experiment with all possible source/target pairs. Thus, some source/target
pairs consist of disasters of the same type (e.g., two earthquakes), while other pairs consist of disasters of different
types (e.g., an earthquake and a hurricane). Furthermore, some pairs have smaller amounts of source data, while
others have larger amounts of source data. Similarly, some pairs have a smaller amount of target unlabeled data,
while other pairs have a larger amount of target unlabeled data. This variety of pairs makes it possible to answer the
research questions we have raised.

For each source/target experiment, we randomly split the target data into target unlabeled (80%) and target test
(20%). Each DANN model was trained on all source data and the target unlabeled data, and subsequently tested on
the test dataset. The results are evaluated using four standard metrics, specifically, accuracy, precision, recall and
F1-measure. For cross-validation purposes, we created three different random splits for each source/target pair. The
metrics reported represent averages over the three random splits (together with the standard deviation).
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Baselines

We compared the DANN model against two baselines: 1) a model that uses only the labeled source data to adapt the
pre-trained VGG-19 – this model can generally be seen as a lower bound for domain adaptation; 2) a model that
uses the target data as labeled data to adapt the pre-trained VGG-19 – this model can generally be seen as an upper
bound for domain adaptation.

Implementation Details

We used TensorFlow’s MomentumOptimizer procedure to train the model using the mini-batch stochastic gradient
descent on a K80 graphics card. Based on our preliminary experimentation, we set the learning rate to 0.001, and the
batch size to 64 images. Furthermore, we used the dropout technique with a rate of 0.5 to prevent overfitting. The
code for the VGG-19 model was adapted from https://github.com/machrisaa/tensorflow-vgg.

EXPERIMENTAL RESULTS

The results of the experiments are shown in Table 2 for the DANN model, which was trained on source labeled and
target unlabeled data (denoted as DANN-SL-TU), and for the two baselines, VGG-19-SL (VGG-19 adapted using
source labeled data), and VGG-19-TL (VGG-19 adapted using target labeled data). The DANN model and the
baselines are tested on the same target test data. Each experiment was repeated three times with different target
unlabeled/test splits, and the results averaged over the three runs.

Discussion of the Results

To answer our first research question, How does the DANN model work for adaptation between disasters of the
same type versus adaptation between disasters of different types?, we compare the results of DANN-SL-TU with
the results of VGG-19-SL for pairs of similar and different disasters. We consider Matthew Hurricane and Ruby
Typhoon to be disasters of the same type, and the same for Ecuador Earthquake and Nepal Earthquake. Disaster
pairs consisting of a hurricane/typhoon and an earthquake are considered to be different. As can be seen from Table
2, the results of DANN-SL-TU are similar and sometimes better than the results of VGG-19-SL, for pairs of similar
disasters. Furthermore, the DANN-SL-TU results are generally better than the VGG-19-SL results for different
disasters. For example, when we use either Ecuador Earthquake or Nepal Earthquake as source, the results for
predicting the other earthquake are similar between DANN-SL-TU and VGG-19-SL. However, if we use either
disaster as source, and predict Matthew Hurricane or Ruby Typhoon, DANN-SL-TU gives significantly better results.
Similarly, when Ruby Typhoon is used as source, the results obtained with DANN-SL-TU for Nepal Earthquake and
Ecuador Earthquake are significantly better then the results obtained with VGG-19-SL, while the two models are
similar for Matthew Hurricane.

Given the above-mentioned results, the answer to our second question, Does the source-target feature adaptation
through DANN give better results as compared to the direct source adaptation from VGG-19?, is overall positive, as
the DANN-SL-TU model gives similar or better results than VGG-19-SL. However, if we consider the size of the
datasets used in our experiments, the results in Table 2 suggest that the DANN-SL-TU approach gives better results
if the source labeled data and the target unlabeled data used for training are relatively large (e.g., a few thousands).
Furthermore, it can be seen that DANN increased the recall for the damage class in most case, especially when the
source and target disasters are of different types. Finally, when comparing DANN-SL-TU with VGG-19-TL to
answer our third question, How do the results of the DANN model compare to the results of a VGG-19 network
adapted based on data from the target domain itself?, we observe that indeed VGG-19-TL acts as an upper bound
for the DANN-SL-TU model. While the gap between the two models is significant, the gap between VGG-19-TL
and VGG-19-SL is also large, suggesting that the source data distribution is indeed different from the target data
distribution, and better domain adaptation models have the potential to bridge the gap.

Figure 2 shows examples of images that are correctly classified or miss-classified by the DANN-SL-TU/VGG-19-
SL/VGG-19-TL networks, when Ruby Typhoon is used as target disaster and Ecuador Earthquake is used as source
disasters. Specifically, the top row in Figure 2 shows examples of images that are correctly classified as damage by
DANN-SL-TU and VGG-19-TL, but miss-classified as no-damage by VGG-19-SL. As the VGG-19-SL network
is trained to recognize earthquake damage, it can fail to recognize rain/flood/wind damage present in typhoon
images. As opposed to that, the middle row in Figure 2 shows images that are miss-classified as damage by both
DANN-SL-TU and VGG-19-TL, but correctly classified as no-damage by VGG-19-SL. It seems that the networks
that use images from the target typhoon during training may over-learn that water-related or wind-like images are
showing damage. Finally, the bottom row in Figure 2 shows images that are miss-classified by both DANN-SL-TU
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Table 2. Classification results: average accuracy (Acc.), precision (Prec.), recall (Rec.) and F1-measure (F1)
for the damage class (average is taken over three runs), together with the corresponding standard deviation (in
parentheses), for DANN-SL-TU (which uses source labeled data and target unlabeled data), VGG-19-SL (adapted
using source labeled data), and VGG-19-TL (adapted using target labeled data). Highlighted in bold font are
results that are statistically different when comparing VGG-19-SL and DANN-SL-TU using a paired t-test with
p ≤ 0.05.

Source Ecuador Earthquake
Target Matthew Hurricane Nepal Earthquake Ruby Typhoon

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
VGG-19-SL 0.557 0.786 0.382 0.514 0.828 0.861 0.841 0.851 0.625 0.823 0.360 0.499

(0.023) (0.058) (0.014) (0.017) (0.006)) (0.004) (0.012) (0.006) (0.023) (0.074) (0.048) (0.043)
VGG-19-TL 0.821 0.823 0.902 0.859 0.897 0.911 0.916 0.912 0.864 0.872 0.896 0.872

(0.015) (0.026) (0.000) (0.011) (0.005) (0.019) (0.034) (0.005) (0.012) (0.029) (0.049) (0.011)
DANN-SL-TU 0.687 0.791 0.683 0.726 0.820 0.842 0.840 0.726 0.741 0.774 0.728 0.744

(0.026) (0.089) (0.085) (0.023) (0.006) (0.025) (0.013) (0.023) (0.027) (0.072) (0.093) (0.031)
Source Nepal Earthquake
Target Matthew Hurricane Ecuador Earthquake Ruby Typhoon

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
VGG-19-SL 0.642 0.916 0.455 0.606 0.873 0.908 0.852 0.878 0.699 0.890 0.483 0.622

(0.052) (0.035) (0.078) (0.077) (0.006) (0.026) (0.026) (0.006) (0.039) (0.036) (0.078) (0.077)
VGG-19-TL 0.821 0.823 0.902 0.859 0.923 0.908 0.957 0.930 0.864 0.872 0.896 0.872

(0.015) (0.026) (0.000) (0.011) (0.010) (0.040) (0.023) (0.008) (0.012) (0.029) (0.049) (0.011)
DANN-SL-TU 0.706 0.860 0.634 0.724 0.871 0.860 0.909 0.884 0.800 0.808 0.812 0.819

(0.023) (0.086) (0.088) (0.038) (0.023) (0.025) (0.038) (0.022) (0.042) (0.043) (0.065) (0.042)
Source Matthew Hurricane
Target Ecuador Earthquake Nepal Earthquake Ruby Typhoon

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
VGG-19-SL 0.747 0.744 0.813 0.777 0.760 0.788 0.808 0.797 0.683 0.650 0.851 0.736

(0.009) (0.013) (0.006) (0.005) (0.009) ()0.008) (0.036) (0.014) (0.006) (0.011) (0.023) (0.002)
VGG-19-TL 0.923 0.908 0.957 0.930 0.897 0.911 0.916 0.912 0.864 0.872 0.896 0.872

(0.010) (0.040) (0.023) (0.008) (0.005) (0.019) (0.034) (0.005) (0.012) (0.029) (0.049) (0.011)
DANN-SL-TU 0.761 0.747 0.870 0.802 0.755 0.784 0.805 0.793 0.681 0.669 0.774 0.713

(0.038) (0.054) (0.037) (0.023) (0.023) (0.012) (0.073) (0.030) (0.024) (0.038) (0.103) (0.032)
Source Ruby Typhoon
Target Matthew Hurricane Nepal Earthquake Ecuador Earthquake

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
VGG-19-SL 0.741 0.817 0.748 0.778 0.731 0.849 0.658 0.741 0.740 0.865 0.618 721

(0.018) (0.016) (0.027) (0.022) (0.009) (0.010) (0.008) (0.008) (0.018) (0.016) (0.027) (0.022)
VGG-19-TL 0.821 0.823 0.902 0.859 0.897 0.911 0.916 0.912 0.923 0.908 0.957 0.930

(0.015) (0.026) (0.000) (0.011) (0.005) (0.019) (0.034) (0.005) (0.010) (0.040) (0.023) (0.008)
DANN-SL-TU 0.736 0.818 0.740 0.774 0.763 0.813 0.777 0.792 0.809 0.814 0.840 0.825

(0.017) (0.057) (0.051) (0.009) (0.021) (0.023) (0.083) (0.033) (0.032) (0.024) (0.080) (0.037)
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 2. Examples of images that are correctly classified or miss-classified by different networks, when Ruby
Typhoon is used as target disaster and Ecuador Earthquake is used as source disaster. (Top) Images that are
classified correctly as damage by DANN-SL-TU and VGG-19-TL, and miss-classified as no-damage by VGG-19-SL.
(Middle) Images that are miss-classified as damage by DANN-SL-TU and VGG-19-TL, while VGG-19-SL correctly
classifies them as no-damage. (Bottom) The first two images on the left are miss-classified by both DANN-SL-TU
and VGG-19-SL, while VGG-19-TL correctly classifies image (h) as damage and image (i) as no-damage. The last
two images on the right have label no-damage and are miss-classified by all networks as damage.

and VGG-19-SL. The first two images in the bottom row are correctly classified by VGG-19-TL as damage and
no-damage, respectively, while the last two images are also miss-classified by VGG-19-TL as damage. Together
with the quantitative evaluation in Table 2, these examples suggest that more unlabeled images from the target, and
ideally more labeled images from the source, can potentially improve the results.

Estimating the Distance between Source and Target Domains before and after Adaptation

To evaluate the difficulty of the domain adaptation tasks in our study, we used the proxy A-distance (Ben-David
et al. 2007) to measure the domain shift. We expect domain adaptation to give better results than VGG-19-SL if the
source and target domains are different, and similar results if the target and source domains are similar. Table 3
shows the domain pairs used in our experiments and their corresponding domain divergence in terms of the proxy
A-distance, before and after feature adaptation. To compute the proxy A-distance, we trained a CNN model to
separate the source domain XS from the target domain XT using unlabeled data. Then, we calculated the proxy
A-distance as 2(1 − 2ε), where ε is the mis-classification error on test data. A high proxy A-distance means that
the two domains are far apart, and benefit from adaptation. A proxy A-distance close to zero means that the two
domains have essentially the same distribution. In addition to the proxy A-distance before adaptation, we also
calculated the proxy A-distance after adaptation to understand if domains with different distributions are brought
closer through adaptation. We should note that the model used to obtain the proxy A-distance between T(XS) and
T(XT ) is equivalent with a two layer perceptron network, based on our model architecture. In practice, we found
that sometimes the classification error may be larger than 0.5, which resulted in a negative value for the proxy
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Table 3. Proxy A-distance between different domains. In the ‘After Adaptation’ case, (A → B) means that the
model was trained with A as source and B as target, while (B → A) means that the model was trained with B as
source and A as target.

Domain A Domain B Before Adaptation After Adaptation (A→ B) After Adaptation (B→ A)
Matthew Hurricane Ruby Typhoon 1.287 0.625 0.141
Ecuador Earthquake Matthew Hurricane 1.633 0.125 0.141
Ecuador Earthquake Ruby Typhoon 1.637 0.250 0.219
Nepal Earthquake Ecuador Earthquake 1.831 0.132 0.091
Nepal Earthquake Matthew Hurricane 1.951 0.078 0.281
Nepal Earthquake Ruby Typhoon 1.915 0.112 0.288

(a) Before adaptation (b) After adaptation (c) Before adaptation (d) After adaptation

Figure 3. Two dimensional representation of source (blue) and target (red) using the VGG-19-SL representation of
the images (before adaptation), and the DANN-SL-TU transformed representation of the images (after adaptation),
for two pairs of disasters. The pair on the left consists of two dissimilar disasters, Ecuador Earthquake (source,
blue) and Ruby Typhoon (target, red). The pair on the right consists of two similar disasters, Ecuador Earthquake
(source, blue) and Nepal Earthquake (target, red).The two representations are reduced to 2 dimensions using the
t-SNE (Van Der Maaten 2014) technique.

A-distance. In such cases, we took the absolute value of the proxy A-distance, as suggested in (Ben-David et al.
2007). From Table 3, we can see that the distance between Matthew Hurricane and Typhoon Ruby is the smallest
among all the distances, suggesting that the distributions of the two disasters are similar. Also, considering the pairs
which contain Nepal Earthquake, we can see that the smallest distance is obtained for Ecuador Earthquake. Thus,
the distances in Table 3 generally are in agreement with the classification results in Table 2. It is also interesting to
note that, after domain adaptation, all proxy A-distances become smaller, which means that the distributions of
T(XS) and T(XT ) are more similar as compared to the original distributions of the source and target datasets.

Visual Distribution Analysis

It can be proven that T(XS) and T(XT ) have similar distributions after the domain adversarial training. Here,
we visualize T(XS) and T(XT ) for some sample source/target pairs to visually analyze the distributions of the
transformed source and target data, by comparison with the distribution of the original source and target data.

To perform this visualization, first, we randomly selected 64 images from Ruby Typhoon and 64 images from
Ecuador Earthquake, two disasters with relatively high distance. Using the VGG-19 model trained on Ecuador
Earthquake, we extracted the weights of the last fully connected layer in the VGG-19 model (this layer has dimension
4096). Next, we used t-SNE (Van Der Maaten 2014) to reduce the dimensionality from 4096 to 2. As a result,
each image is represented by a two dimensional vector. We plotted the 128 images using the binary representation
in Figure 3 (a), where we used blue triangles for images from Ecuador Earthquake and red dots for images from
Ruby Typhoon. Similarly, using the DANN model trained on Ecuador Earthquake as source and Ruby Typhoon
as target, we extracted the weights of the first fully connected layer, which represents the output of the transfer
function T(x). The graph for the 128 images (from Ecuador Earthquake and Ruby Typhoon) is shown in Figure 3
(b), where the blue triangles represent images from Ecuador Earthquake and the red dots represent images from
Ruby Typhoon. As can be seen, the graph in Figure 3 (a) shows a clear boundary between the two domains, while in
the graph in Figure 3 (b) the two domains are harder to separate as their distributions overlap significantly. Thus,
the visualization of the reduced representations shows that after domain adaptation, the difference between source
(Ecuador Earthquake) and target (Ruby Typhoon) has been indeed reduced.

In addition to performing the visualization of the transformed representations for two domains with high distance,
we also performed if for two domains with relatively smaller distance. Specifically, we randomly selected 64

CoRe Paper – Social Media in Crises and Conflicts
Proceedings of the 16th ISCRAM Conference - València, Spain May 2019

Zeno Franco, José J. González and José H. Canós, eds.



Li et al. Identifying Disaster Damage Images Using a Domain Adaptation Approach

images from Nepal Earthquake and 64 images from Ecuador Earthquake. Following the same procedure described
above, we plot two graphs in Figure 3 (c) and (d), respectively. In (c), the VGG-19 model was trained on Ecuador
Earthquake and in (d), the DANN model was trained on Ecuador Earthquake as source and Nepal Earthquake as
target. As can be seen in (c), the distributions of the two domains are indistinguishable even before adaptation, as
the two domains have similar distributions in the first place. Thus, in this situation, DANN can not improve much
the results of VGG-19, as the domains are already similar.

CONCLUSIONS AND DISCUSSION

In this paper, we studied the application of domain adaptation to identify disaster images that show damage. We
adapted the DANN approach by combining it with the VGG-19 model, and thus taking advantage of the available
labeled data used to train VGG-19. Experimental results suggest that the domain adaptation approach is especially
useful when the source and target disasters are of different types, and thousands of labeled instances are available
for the source disaster (a requirement which can be met without much effor or cost).

Given that the proposed approach does not require labeled data from the target domain, it can potentially be used to
identify damage images in nearly real time. To do this, one would first use a pre-trained model that identifies images
relevant to disasters and filters out non-relevant images. A model like this is already available as part of the AIDR
platform (http://aidr.qcri.org), as described by Nguyen, Alam, et al. (2017). Subsequently, our approach
can be used to identify images that show damage, by first employing the model pre-trained on source data, and
gradually adapting it based on unlabeled disaster-relevant target images. The identified damage images could be
used to perform fast damage assessment, which in turn can results in faster disaster response. Thus, we envision
that our approach, together with relevancy-filtering models, can be incorporated in the routine operations of disaster
response and management organization.

We should note that our current models were trained to distinguish between damage and no-damage images. This is
a limitation imposed by the data that was available for training, which did not discriminate well between severe
and mild damage classes. However, as labeled images for more specific classes of damage become available, our
models can be re-trained and adapted to identify such classes. Moreover, one can further analyze images that show
damage by localizing and quantifying damage on a continuous scale, as shown in X. Li et al. (2018). Such level
of detail can help response teams prioritize their operations based on the severity of the damage, assuming that
resources are scarce.

As part of future work, we plan to apply the DANN approach to other disaster image classification problems, for
example, specific types of damage including building damage, road damage, bridge damage, human damage, etc.
We also plan to study other domain adaptation approaches in the context of image analysis for disaster response.
Finally, we aim to study approaches that can help identify image features indicative of damage, or even other features
that might be useful for response teams.
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