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Towards fine-grained
object-level damage assessment
during disasters
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Katelyn Keegan2, Aya El-Sakka1, Muhammad Imran1 and
Ferda Ofli1

1Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar, 2MD Community
Emergency Response Team (CERT), Gaithersburg, MD, United States

Social media can play an important role in current-day disaster management.
Images shared from the disaster areasmay include objects relevant to operations.
If these objects are identified correctly, they can offer a preliminary damage
assessment report and situational awareness for response and recovery. This
research is carried out in collaboration with a Community Emergency Response
Team (CERT) to understand the state-of-the-art object detection model’s
capability to detect objects in multi-hazard disaster scenes posted on social
media. Specifically, 946 images were collected from social media during
major earthquake and hurricane disasters. All the images were inspected by
trained volunteers from CERT and, 4,843 objects were analyzed for applicability
to specific functions in disaster operations. The feedback provided by the
volunteers helped determine the existing model’s key strengths and weaknesses
and led to the development of a disaster object taxonomy relevant to specific
disaster support functions. Lastly, using a subset of classes from the taxonomy,
an instance segmentation dataset is developed to fine-tune state-of-the-art
models for damage object detection. Empirical analysis demonstrates promising
applications of transfer learning for disaster object detection.

KEYWORDS

object detection, instance segmentation, disaster management, social media, deep
learning, disaster object taxonomy

1 Introduction

In the aftermath of a large-scale disaster, it is important to assess the impacted area
to identify obstacles and hazards that may impede response or present risk to the safety
of both victims and responders. During disasters over the past decade, social media has
provided immediate raw data from eyewitnesses (Purohit and Peterson, 2020), including
imagery. These images can show damages and hazards valuable for responders preparing to
deploy into the area. For example, designating and operating safe staging areas.Many studies
have been conducted to gather, annotate, and analyze the social media disaster images to
determine the disaster type, damage severity level, and humanitarian impact, among others
(Nguyen et al., 2017; Alam et al., 2018; Mouzannar et al., 2018; Li et al., 2019; Alam et al.,
2020; Weber et al., 2020).

While these studies mainly focused on classifying the image into different
categories, they fail to consider each individual object’s importance within the
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image to disaster support functions. Although some researchers
attempted to detect objects affected by fire (Antzoulatos et al.,
2020) and other disaster types (Asif et al., 2021), their
research lacks participation and guidance from emergency
managers.

Targeted objects in social media images can aid humanitarian
organizations in identifying, planning, and implementing
immediate actions. This multidisciplinary collaboration amongst
computer scientists, emergency managers, and volunteers attempt
to aid response and speed recovery in hurricanes and earthquakes.
In addition to seeking evidence that supports the strengths
and weaknesses of object detection models, this work explores
whether an artificial intelligence model can detect and label
relevant objects in disaster images. We focus on transportation
and debris management-related support functions, because of
their frequent involvement in response and recovery during
both earthquakes and hurricanes. As an example, an image
containing visual evidence of obstructions on a roadway may
consequently disrupt transportation routes during response thus
forcing responders to find alternate routes into the disaster
area.

Our underlying hypothesis is that although current state-
of-the-art object detection models perform well in detecting
intact/undamaged objects, their performance degrades significantly
when exposed to damaged objects, which are common to observe
during a disaster event. Additionally, these current models were not
developed for nor designed by emergency managers and thus lack a
quantity of terms relevant to functions performed during response
and recovery. For this purpose, a group of skilled volunteers from
CERT analyzed the output of off-the-shelf models to determine the
accuracy of the predictions they make. The feedback provided by
experts helps us determine key strengths and weaknesses of the
state-of-the-art deep learning model in detecting and categorizing
objects. Furthermore, we propose an extensive disaster object
taxonomy that can be used in future studies to annotate new
datasets for objects affected during a disaster and training deep
learning models tailored for recognizing damaged objects during a
disaster. Lastly, using a small subset of classes from the taxonomy,
we annotate the first-of-its-kind disaster object dataset to train
deep learning models for the instance segmentation task. Our
quantitative analysis reveals significant performance improvements
for the detection of damaged objects when fine-tuned on our
dataset.

Our contributions in this paper are as follows.

1) To the best of our knowledge, this is the first attempt to test
and improve the performance of state-of-the-art object detection
models for damaged object detection.

2) Conducted a comprehensive qualitative analysis of the strengths
and weaknesses of state-of-the-art object detection models in
disaster scenarios.

3) Developed a disaster object taxonomy for disaster response by
involving emergency managers.

4) Developed a first-of-its-kind damaged object instance
segmentation dataset and performed empirical analysis
to highlight models’ weaknesses and strengths when
fine-tuned.

2 Methodology

2.1 Task description

This work aims to understand the effectiveness of deep learning-
based object detection models to detect objects in a disaster scene.
These models can be helpful to the community during natural
disasters by providing real-time damage assessments. The detection
and localization of damaged objects can be used to guide rescue
and relief operations, as well as to direct resources to the areas that
need them most. But, in order to build such models by computer
scientists, humanitarian experts need to identify themost important
objects and the impact types for rescue, response, and damage
assessment.

2.2 Data selection

To perform the data analysis, 1,000 test images were selected
from the MEDIC dataset (Alam et al., 2021). MEDIC was chosen
due to its diversity in event coverage and availability of damage
severity labels. Images with damage severity levels “severe or mild”
and event types “hurricane, typhoon, and earthquake”were included
in this study. For better visual analysis, images with resolution less
than 500×500 pixels were excluded. Later, a manual inspection was
performed to warrant the quality and relevancy of the selected
images for the study. The final dataset consists of 946 images where
476 images are from earthquakes and 470 images from hurricane
events.

2.3 Model selection

Deep learning models can identify objects in an image in one
of these ways: i) Object Detection (Girshick et al., 2014) where
the model detects the object and its corresponding bounding box;
ii) Semantic Segmentation (Girshick et al., 2014) where the model
performs per-pixel prediction for each class by treating multiple
objects of the same class as a single entity; iii) Instance Segmentation
(Dai et al., 2016)where themodel also performs per-pixel prediction
of specified classes, but treats multiple objects of the same class
as distinct individual instances; and, iv) Panoptic Segmentation
(Kirillov et al., 2019b) where the model combines the concept of
semantic and instance segmentation and assigns two labels (a
semantic label and an instance id) to each of the pixels.

For quality assessment, we chose 11 off-the-shelf state-of-the-
art open-source models. It is important to note that for quality
assessment of these models, we did not perform any model
training, and only those models were included in this study,
where corresponding trained weights were available. For the object
detection task, we chose YOLOv51 and Soft Teacher (Xu et al.,
2021) trained on the COCO dataset (Lin et al., 2014), and Faster
R-CNN (Ren et al., 2015) trained on the PASCAL-VOC dataset

1 ultralytics/yolov5: v6.0

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2023.990930
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Sadiq et al. 10.3389/feart.2023.990930

(Vicente et al., 2014). For the semantic segmentation task, we chose
BEiT (Bao et al., 2021) andMaskFormer (Cheng et al., 2021) trained
on the ADE20K dataset (Zhou et al., 2017), MaskFormer trained
on the Cityscapes dataset (Cordts et al., 2016), and MaskFormer
trained on the Mapillary Vistas dataset (Neuhold et al., 2017). For
the panoptic segmentation task, we chose MaskFormer trained
on the ADE20K dataset and Panoptic FPN (Kirillov et al., 2019a)
trained on the COCO-Stuff dataset (Caesar et al., 2018). For the
instance segmentation task, we chose Mask R-CNN (He et al., 2017)
trained on the Cityscapes dataset and Mask R-CNN trained on the
LVIS dataset (Gupta et al., 2019). Figure 1 illustrates the output of
all the models on a sample image.

After manually analyzing the predictions of each model on
an initial set of 50 images, we decided to use the MaskFormer
model trained on the ADE20K dataset for panoptic segmentation
as our final model for analyzing the complete set of 946 images.
We selected this model due to its ability to predict many outdoor
objects (e.g., buildings, bridges, cars, roads, trees, etc.) where the
majority of them are instance-based with the exception of buildings
as seen inFigure 1I.Moreover, thismodel producedmuch smoother
segmentation masks around varying object sizes and scales, and
did not include noisy and irrelevant objects like curb and catch
basin as seen in Figure 1K. One common shortcoming of the
existing scene segmentation datasets (e.g., ADE20K, Cityscapes,
Mapillary Vistas, and COCO-Stuff) is that they do not provide
instance-level annotations of objects such as buildings and houses.
Access to instance-level delineation can influence decision-making
for responders. As an example, within an earthquake disaster scene,
the quantity and different types of damaged structures could assist
search and rescue team preparations for extricating trapped victims.

2.4 Volunteer selection and training

Eight volunteers from a Community Emergency Response
Team (CERT)2 were carefully selected by a Certified Emergency
Manager (CEM R©).3 The CEM R© designation is an internationally
recognized professional certification for emergency managers
earned by demonstrating a strong understanding of the emergency
management field through knowledge, experience, work history,
training, education, and professional contributions. All eight
volunteers were previously trained in basic disaster response skills
such as fire safety, light search and rescue, and disaster medical
operations prior to the qualitative analysis. The CEM R© briefed the
volunteers on the goal of the analysis and trained them on how to
use the user interface. The training was accomplished through a
live demonstration of the interface using disaster images. Volunteers
were split into two teams, with one team assigned earthquake
images, and the other team assigned hurricane images.

The trained volunteers were instructed to assess all the objects
identified ormissed by themodel using an instance-based approach.
In other words, if there are three cars in the image, the volunteer
was required to assess each car separately. The assessment of each

2 https://www.ready.gov/cert

3 https://www.iaem.org/certification/intro

object involved five types of human analysis. First, the volunteer
identified whether the object was damaged or not (Yes or No).
Secondly, they determined how easy it was to detect the object
from a human perspective (Easy, Relatively Easy, Difficult, or Very
Difficult).Thirdly, they assessed the accuracy of the model detection
(Correct, Partially Correct, Incorrect, orMissed). In instances where
the model incorrectly predicted an object, e.g., a car is mislabeled as
a boat, the volunteers were instructed to input this error as an entry
where the object is a ‘boat’, and the model prediction is ‘incorrect’.
Theywere also expected to add another entry highlighting the object
missed by themodel, e.g., the object is a ‘car’, and themodel detection
is ‘missed’. To gain insights into how a volunteer concluded their
assessment on an object, a feedback sectionwas included for them to
enter any observations pertaining to the evaluated object. Lastly, the
volunteers identified the applicability of the object to transportation
and/or debris management support functions.

To assist the human assessment of disaster object detected or
missed by the model, a user interface was carefully designed to
gather qualitative feedback from volunteers, as seen in Figure 2.
Each of the eight volunteers was given individual page links with
unique images to be assessed. For each image, the volunteers were
instructed to analyze all the objects detected by the model and for
any objects missed by themodel to gather the following information
for each object.

1) Damage: Whether the object shows any sign of damage or not,
where the user has to select either “Yes” or “No.”

2) Human Detection: How easy it is to detect the object by the
human eye, where the user has to select one of the following:
“Easy,” “Relatively Easy,” “Difficult,” or “Very Difficult.”

3) Model Detection: How accurate the model detected the object,
where the user has to select one of the following: “Correct,”
“Partially Correct,” “Incorrect,” or ”Missed.”

4) Feedback: User feedback on the overall assessment of the object,
where the input field has no word limit.

5) Mission Area Focus: Identifying whether an object impedes
response operations, where the user can select “Transportation”
and/or “Debris Management.” The user also has the option to
select “Unable to Determine or N/A.”

Once the user fills in their evaluation for an object and clicks
the submit button, their response gets saved to Redis, a NoSQL
database. Once the insertion is complete, a retrieval request is made
to immediately visualize the saved responses in the table below.
Users also have the option to edit and delete their responses. The
following features have been implemented to ensure maximum
usability.

• Clicking on the original or model image opens the image in a
new tab so users can easily zoom in.
• List of detected objects summarized under the model image.
• Page number is a dropdown field to not only show the current

page but to allow users to easily navigate to any page/image they
desire
• The“GoToLast Analyzed Image” button takes the user towhere

they last left off
• The “Check Progress” button opens a new window showing an

“Assessed” and “Not Assessed” column. “Assessed” shows all the
page numbers where they have inputted at least one record,
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FIGURE 1
(A) Input image; Object Detection: (B) YOLOv5 on COCO, (C) Soft Teacher on COCO, (D) Faster R-CNN on PASCAL-VOC; Semantic Segmentation: (E)
BEiT on ADE20K, (F) MaskFormer on ADE20K, (G) MaskFormer on Cityscapes (K) MaskFormer on Mapillary Vistas; Panoptic Segmentation: (I)
MaskFormer on ADE20K (J) Panoptic FPN on COCO-Stuff; Instance Segmentation: (H) Mask R-CNN on Cityscapes (L) Mask R-CNN on LVIS.

whereas “Not Assessed” shows all the page numbers which have
been untouched. This will help in identifying any missed pages.

3 Qualitative assessment results

The volunteers identified and assessed 2,344 objects for
earthquakes and 2,499 objects for hurricanes from a pool of
946 disaster images. To ensure all the volunteer responses were
standardized, we first conducted a quality assessment before
analyzing all the responses.

3.1 Quality of volunteer assessments

In order to validate how well the evaluation protocol was
followed by all the volunteers, the CEM R© re-assessed 40 randomly
selected images as ground truth which was then compared to the
volunteers’ assessments. This helped us to identify discrepancies
such as incorrectly identified objects and completely missed objects.
Specifically, we found that 62% of objects assessed by the volunteers
matched with the ground truth (i.e., true positives), whereas
the volunteers identified 5% of the objects incorrectly (i.e., false
positives) and failed to identify 33% of the objects in the ground
truth (i.e., false negatives). Moreover, we computed Cronbach’s
Alpha (Cronbach, 1951) to measure the consistency between
volunteers and ground truth across damage (0.85), human detection
(0.98), and model detection (−0.61) assessments. The scores for
damage and human detection indicate strong agreement. However,
the model detection score shows almost no agreement due to two

varying styles of volunteers, stringently or leniently. These varying
styles led to disagreements in the model detection assessments,
where some volunteers who are very strict would put ‘incorrect’
when the prediction is slightly off, as compared to lenient volunteers
who would put ‘correct’.

3.2 Comparison of earthquake and
hurricane disaster

3.2.1 Object count differentials
Some objects have a significant gap in quantity between

hurricanes versus earthquakes. This indicates that not all disaster
types are the same, and therefore, object relevancy can differ or is
dynamic. For example, trees, houses and water are three objects
with the highest differential favouring hurricanes, as this disaster
brings flooding, which is not often observed in earthquake images.
Whereas, for earthquakes, the top two objects include persons and
debris, which is explainable as earthquakes cause structural collapses
resulting in rubble and debris that search and rescue teams (person)
dig through in search of survivors. A complete list of differentials
can be found in the Supplementary Material.

3.2.2 Similarities and differences
Our analysis provided us with some further insights into the

differences between the two disasters. For example, earthquake-
induced debris such as damaged buildings and bridges are localized
and do not spread across wider regions. In contrast, hurricane debris
is an accumulation of multiple sources of damage, i.e., destroyed
structures, trees, household objects, etc., which can spread out
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FIGURE 2
Web user interface.

great distances. Another difference we identified is that the damage
from earthquakes is more often apparent than hurricane damage.
Earthquake images show clear signs of damage, e.g., a destroyed
building, cracked roads, broken poles, and damaged cars. On the
other hand, hurricane images show objects submerged in water, e.g.,
buildings, cars, poles, vegetation, etc., that do not appear damaged.
Apart from these differences, we also observed some similarities
between model predictions across both disaster types. The model
tends to consider the context of other objects in the image and
tries to connect one object to another; for example, the model
often correlates the ground with stones, sidewalk with person, floor
to ceiling, and road to vehicle. We also observed that the model
struggles to accurately classify objects when the weather is hazy or
when the image is taken from an aerial view.

3.3 Strengths and weakness of object
detection models

Object detection models are trained for specific tasks (e.g.,
autonomous driving), and the taxonomy is tailored for that specific
task. In this study, we focused on analyzing the strengths and
weaknesses of the model’s detection for objects relevant to disasters
only. We chose to ignore the objects (e.g., indoor objects) which are
irrelevant for disaster response. While the most common strengths
and weaknesses are summarized below, the full list of objects
considered for inclusion in the taxonomy can be found in the
Supplementary Material.

3.3.1 Strengths
1) Buildings that are easy to detect by humans and have zero to

medium damage are accurately predicted by the model whether
the building is in the far distance or nearby.

2) In most cases, undamaged vehicles are accurately predicted (at
certain angles when the whole vehicle is seen) by the model
whether the object is in the foreground or in a very far distance
(where the object is very small).

3) Model can correctly predict undamaged/slightly damaged road
in the presence of road markings, separator, guardrail, and
vehicles.

4) Model can successfully predict and differentiate between
different types of agriculture, e.g., trees, palm trees, grass, plant,
etc.

3.3.2 Weaknesses
1) Debris causes other object predictions to be inaccurate.
2) Larger objects can overshadow the prediction of other relatively

smaller objects.
3) Due to higher variations in flood water, e.g., muddy water, clear

water, water with debris, etc., model predictions are not always
correct.

4) Vehicles and other objects almost fully submerged in water or
fully/partially damaged, makes it hard for the model predictions.

5) Damage level to the object affects the performance of
the model prediction, i.e., higher the damage, poorer the
performance.
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4 Disaster object taxonomy

In assessing the 946 earthquake and hurricane disaster images
for object relevance using 150 pre-existing model-generated
objects, we discovered nearly half were related to interior objects,
disqualifying them from being relevant to transportation and/or
debris removal operations. At the conclusion of the assessment,
volunteers had generated additional relevant objects leading
to the determination that a disaster object class and sub-class
taxonomy was needed. Given the scope, magnitude, and complexity
(Hughes et al., 2014) of earthquakes and hurricanes, compounded
by the number of varying disaster response support functions4 often
found in such large-scale disasters, we limited the building of a
taxonomy using disaster object classes and sub-classes relevant to
transportation and debris management. We were able to create
three classes and 10 sub-classes, which together contained 106
relevant objects. The following steps were conducted in generating
the taxonomy.

1) A complete list of objects from both disasters with their counts
were recorded.

2) A relevancy scorewas assigned to each objectwhere the following
scale was used: 3 = relevant to both transportation and debris
removal; 2 = relevant to one and not the other; 1 = potentially
relevant to some other disaster operation; 0 = irrelevant to any
disaster operation.

3) Objects with low frequency and zero relevance were excluded
from further analysis.

4) Each remaining object was assigned to its corresponding class,
considering it can be applicable to one ormore support functions.

The first class “Natural and Living” consists of two sub-
classes. The Natural sub-class contains 11 objects, e.g., sky,
mountain, and hill, whereas the Living sub-class contains four
objects: person, victim, dog, and other animals. The second class
“Transportation, Infrastructure and Utilities” consists of three
sub-classes. The Transportation sub-class contains land, maritime,
and aerial transportation where only the land transportation is
sub-divided into three categories, where objects are classified as
light/medium vehicles, heavy vehicles, or emergency response
vehicles. In total, 17 objects are identified across the three types
of transportation with an addition of seven inanimate objects and
one other vehicle object. The Infrastructure sub-class consists of
seven objects, e.g., structure, bridge, highway, and tower, whereas
theUtilities sub-class contains eleven objects, e.g., utility pole, power
lines, cables, and transformer. The third class “Debris Removal,
Response, Shelter” consists of four sub-classes and a debris category.
The objects in the Structural sub-class can solely be a structure,
e.g., house, a component of a structure, e.g., wall, or a material
used to build the structure, e.g., brick. Therefore, this sub-class
is sub-divided into Structure, Components and Materials where
a total of 32 objects are included. The Response Equipment sub-
class consists of nine objects which are also sub-divided into three
categories to differentiate heavy, light and emergency equipment.
The Shelter sub-class consists of five objects, e.g., tent, and tarp. The

4 https://www.fema.gov/emergency-managers/national-preparedness/
frameworks/response

TABLE 1 Performance in terms of AP’s of off-the-shelf instance segmentation
models (without fine-tuning) on different variations of Car class instances.

Mask-RCNN Mask2Former

Car - Damaged+Undamaged 43.88 25.05

Car - Undamaged 42.10 22.65

Car - Damaged 06.37 06.34

Communication sub-class only contains satellite dishes. Of the 106
objects in the taxonomy, 59 objects were identified by humans, e.g.,
transformers, rescue/response vehicles, and fire hydrant, whereas
the remaining 47 objects were already part of the model. Refer to
Supplementary Material for the hierarchical diagram of taxonomy
where the human-identified objects are highlighted with an asterisk
and the objects are color coded based on the relevancy score. A full
hierarchal diagram of disaster object taxonomy can be seen in the
Supplementary Material.

5 Training damage object detection
models

Although building models for damaged object detection
requires bigger efforts in terms of annotating a large-scale dataset
with damaged objects and their impact types, this section lays down
a foundation for this bigger goal by demonstrating the effectiveness
of transfer learning to fine-tune state-of-the-art object-detection
models on a small dataset consisting of both undamaged and
damaged objects. To this end, this section presents details of data
annotation of damaged objects in disaster images, models fine-
tuning, and their results.

5.1 Data, annotations, and models

Of all 946 images used for the qualitative analysis, we randomly
selected 500 images (250 from earthquakes + 250 from hurricanes)
to perform manual annotations of individual objects. Specifically,
paid workers from the Amazon Mechanical Turk (AMT) platform
were tasked to perform instance segmentation. Out of all classes
presented in the taxonomy (described in Section 4), the manual
annotation was restricted to six classes, namely,: bridge, building,
road, car, pole, and tree. For each class, we also introduced a
damaged version of it (e.g., damaged bridge, damaged car, damaged
building). In total, 12 classes were used for the manual annotation.
These classeswere selected based on their frequency of occurrence in
the disaster images and also by taking into consideration the amount
of damage incurred by an object. All 500 images were annotated
by AMT workers. Next, we visually inspect all the annotations
and separate a subset of 30 images as a test set (by preserving
the occurrence of each class) for the performance evaluation. The
remaining 470 images are used as our training set. In total, 7,331
and 558 labeled instances of all classes appear in the training and
test sets, respectively. The distribution of the labels can be found in
the Supplementary Material.

Two experiments are performed to empirically evaluate the
performance of off-the-shelf models for damage object detection.
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TABLE 2 Class-wise AP for fine-tunedMask-RCNN andMask2Former over the test set.

Class name Mask-RCNN Mask2Former Class name Mask-RCNN Mask2Former

Bridge 56.89 10.21 Damaged bridge 0.00 90.00

Car 30.38 20.94 Damaged car 40.13 57.52

Building 11.53 7.33 Damaged building 11.60 19.41

Tree 11.02 5.432 Damaged tree 2.06 08.28

Road 01.46 12.39 Damaged road 34.47 37.65

Pole 08.87 08.83 Damaged pole 0.09 0.42

FIGURE 3
Ground-truth annotations (A,D and G); Mask-RCNN instance segmentation model predictions (B,E and H); Mask2Former instance segmentation model
predictions (C,F and I).

First, existingmodels are used as-is (without fine-tuning) to perform
instance segmentation. However, in the second experiment, models
are first fine-tuned before the evaluation. Two state-of-the-art
instance segmentation models, i.e., 1) Mask-RCNN with Resent-
50-FPN trained over the COCO dataset and 2) Mask2Former with
Resnet50 trained over the Cityscapes dataset are used for these
experiments. Initial weights of both models are obtained from the
Detectron2 library. Average Precision (AP) is used to evaluate the
performance of the models. It is worth noting that no instance
segmentationmodels existwhich can identify structural objects such
as buildings, bridges, walls, poles. Thus, the only overlapping class
where we can compare the models’ performance in damage scenes
is “Car”. Therefore, in our first experiment, we use both models

(without fine-tuning) for comparing their performance on different
variations of the car class, i.e., Car with damaged and undamaged
instances, Car with undamaged, and Car with damaged instances.
However, in the second experiment, we fine-tune both models using
the training set and measure their performance for all 12 classes on
the test set.

5.2 Results

Table 1 presents the results of both off-the-shelf models (i.e.,
without fine-tuning) when applied to different variations of the
car class, i.e., damaged, undamaged, and a combination of both.
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Although bothmodels yield reasonable performance on undamaged
car instances (i.e., the second row in Table 1), they perform poorly
for damaged car instances (i.e., the third row in Table 1). As
these models are not trained on damaged car objects, their low
performance is justified. However, can these models be fine-tuned
to improve their damaged object detection performance? Our next
experiment exactly answers this question, as described below.

Table 2 presents the results of the fine-tunned models for all 12
classes. The instance segmentation performance of both models is
reasonable for undamaged classes except building, tree, road, and
pole classes. As themain focus of this experiment is to determine the
effectiveness of fine-tuned models for detecting damaged objects,
we observe a substantial improvement in the case of the damaged
car class. Recall that the APs of both models without fine-tuning
were 6.37 for Mask-RCNN and 6.34 for Mask2Former (as shown
in the third row of Table 1). However, the fine-tuned versions of
the models yield significantly higher APs for the damaged car class,
which are 40.13 for Mask-RCNN and 57.52 for Mask2Former (as
shown in Table 2). Additionally, the damaged road class observes
a high AP compared to the undamaged road. While the damaged
building class observers reasonably better performance, the damaged
tree, and damaged pole classes are on the lower end.

The reason for car performance degradation after fine-tuning
can be explained by considering them as two not easily separable
classes. Since the original off-the-shelf models were trained with
tens of thousands of intact/undamaged cars, they perform well in
that case. But, when the model is fine-tuned with the inclusion
of damaged car instances, it causes confusion between cars and
damaged cars, especially when the damage is not clearly visible
enough, hence affecting the performance of intact cars. But for
damaged cars, fine-tunedmodels outperformedoff-the-shelfmodels
by a long margin (57% vs. 6%). Figure 3 presents the visual
predictions of ground-truth vs. model predictions over the test
set from Mask-RCNN and Mask2Former. It is apparent that
models perform a decent job in differentiating damaged objects
from undamaged ones. Both models show promising capability to
perform under different lighting conditions (3 (b,c)). These results
clearly support the need for a new dataset and a new taxonomy
tailored for disaster-related objects.

6 Conclusion and future directions

This study was performed to emphasise on the need of a
object detection during disaster events. A qualitative approach was
taken to involve a CEM R© to train volunteers from a CERT to
assess the performance of an existing object detection model in
predicting objects in earthquake and hurricane images. Through
an extensive analysis of all the volunteer assessments, key strengths
and weaknesses of the model were identified which then led to the
development of a disaster taxonomy consisting of 106 object classes.
A quantitative comparison of state of the art off-the-shelf models
trained without any disaster related images was also conducted with
the models fine tuned with images exhibiting enough damage. This
analytical study led us to believe that there is a need to collect
more data in line with the object categories related to disaster

scenario, to develop a dataset more relevant to disaster operations
which has not been fully developed yet. This dataset can then
be used to further enhance the current deep learning models for
disaster object detection. While this study focused on two disaster
response support functions, it would be worth replicating the study
for different support functions such as “Search and Rescue” and
“Communications.” The assessments from this new study can be
merged with this paper’s findings to create a more comprehensive
taxonomy with objects being valuable across multiple other disaster
operation functions besides transportation and debris management.
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