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Abstract

In this paper, we propose a method for temporal segmen-
tation of human repetitive actions based on frequency anal-
ysis of kinematic parameters, zero-velocity crossing detec-
tion, and adaptive k-means clustering. Since the human mo-
tion data may be captured with different modalities which
have different temporal sampling rate and accuracy (e.g.,
optical motion capture systems vs. Microsoft Kinect), we
first apply a generic full-body kinematic model with an un-
scented Kalman filter to convert the motion data into a uni-
fied representation that is robust to noise. Furthermore, we
extract the most representative kinematic parameters via the
primary frequency analysis. The sequences are segmented
based on zero-velocity crossing of the selected parameters
followed by an adaptive k-means clustering to identify the
repetition segments. Experimental results demonstrate that
for the motion data captured by both the motion capture
system and the Microsoft Kinect, our proposed algorithm
obtains robust segmentation of repetitive action sequences.

1. Introduction
Temporal motion segmentation is a crucial step in human

motion understanding and analysis [7]. In many applica-
tions of human-machine interaction, such as gesture-based
computer interaction, robotic manipulation, and computer
gaming, the humans have to perform a set of primitive ac-
tions multiple times. This is in particular the case in various
interactive fitness or rehabilitation applications where par-
ticipants are required to perform several repetitive exercises
while their physical performance is being monitored by mo-
tion sensors. To provide feedback on the performance (e.g.,
automatic repetition counting) or to perform post-exercise
performance analysis, it is necessary to partition the repet-
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itive motion data into multiple segments where each repre-
sents one temporal repetition of the primitive action.

Extensive literatures have addressed the problems of
temporal motion segmentation. Jenkins et al. [3] proposed a
zero-velocity crossing (ZVC) detection algorithm based on
joint angle velocities to partition the motion data of repet-
itive arm exercises into individual repetitions. Due to high
sensitivity of the zero-velocity crossing to input noise, it is
only practical when direct velocity measurements are avail-
able or when the position measurements have small jitter.
Later on, majority of temporal segmentation efforts have
been focused on the motion data captured by an optical mo-
tion capture system since it can provide motion data with
high frame rate (> 100Hz) and high positional accuracy
(up to ∼ 1mm) [2]. Lu and Ferrier [5] introduced a multi-
dimensional segmentation algorithm to automatically de-
compose a complex motion into a sequence of simple lin-
ear dynamical models. Additionally, Jernej et al. [1] pro-
posed three segmentation methods based on the principle
component analysis (PCA) to distinguish one primitive ac-
tion from the other. Their first two methods can perform
the segmentation in real-time using PCA and probabilistic
PCA, respectively, whereas the third method (PCA-GMM)
fits a Gaussian mixed model to the data of the entire exer-
cise sequence offline. Although the proposed PCA-GMM
segmentation outperforms the previous two, the PCA-based
approach cannot always distinguish the segments of repeti-
tive actions since the principle components within each seg-
ment are typically not sufficiently distinguishable. Zhou et
al. [16] proposed a bottom-up hierarchical aligned clus-
tering analysis (HACA) algorithm by combining kernel k-
means with generalized dynamic time alignment kernel to
cluster motion data into motion primitives. Other unsuper-
vised methods intended for temporal segmentation of activ-
ities into distinct actions include neighbor graph [12], ZVC
with hidden Markov model [4], and continuous linear dy-
namic system [14]. These methods, however, typically can-
not segment the periodic actions into repetitive primitives
because of large similarity between the action units.

4321



More recently, depth-sensing cameras such as Microsoft
Kinect [15] have been introduced as a convenient low-cost
alternative to full-scale motion capture systems for many
real-world applications. This type of sensor captures both
the texture images and the depth information from the ob-
served scene, and extracts the human pose [10] in real time.
Since the data captured by Kinect are noisy (with joint po-
sition errors of several centimeters) and have relatively low
framerate (30 FPS) as compared to the marker-based mo-
tion capture, the motion segmentation is even more chal-
lenging. Several researchers approached the human action
recognition and motion analysis of Kinect data with super-
vised methods, e.g. human action recognition based a two-
layer hierarchical hidden Markov model (HMM) [11], and
gesture recognition based on a cascaded correlation-based
classifier [9]. The supervised approaches, however, are time
consuming and require considerable amount of training data
which may be difficult to match the performance differences
across users. Furthermore, these literatures do not consider
the repetitive actions.

As majority of the segmentation frameworks address the
partitioning of motion sequences into distinct actions or ac-
tion primitives, less attention has been given to the segmen-
tation of repetitive actions into individual repetitions. In
this paper, we propose a generic unsupervised segmentation
approach based on the inherent properties of such repeti-
tive motion. Our motion segmentation algorithm can be
summarized as follows: a) Application of a generic kine-
matic model using unscented Kalman filter (UKF) [13] to
convert the motion data into a unified representation that
also reduces the effects of noise; b) Use frequency analy-
sis of repetitive motion data to determine the most repre-
sentative kinematic parameters for repetition segmentation;
c) Finally, application of zero-velocity crossing detection
followed by an adaptive k-means clustering to obtain ro-
bust repetition segmentation in accordance with the motion
phase.

The main contributions of this work are: (1) robust seg-
mentation of repetitive actions under large input data noise;
(2) no need for training data or manual annotation; (3) gen-
eral approach for both optical motion capture and Kinect
type of modalities.

The rest of this paper is organized as follows: Section
2 briefly describes the proposed segmentation framework.
The kinematic model and the unified data transformation
based on UKF are introduced in Section 3. Section 4 pro-
vides details on the temporal segmentation based on the fre-
quency analysis, zero-velocity crossing detection and adap-
tive k-means clustering. Finally, Section 5 demonstrates the
experimental results on motion capture and Kinect datasets
and Section 6 concludes the paper.

Figure 1. An example of a repetitive motion sequence “jumping
jacks” captured by an optical motion capture system. The dotted
curve demonstrates the trajectory of the left hand.

Figure 2. Overview of the temporal repetitive action segmentation
framework.

2. Temporal repetitive action segmentation
framework

In this section, we provide an overview of the proposed
framework for temporal segmentation of repetitive human
motion. Each proposed module will be further described in
subsequent sections.

In this paper, we address the input motion data repre-
sented as a sequence of skeletal poses. Figure 1 demon-
strates an articulated skeleton sequence of the repetitive ac-
tion, “jumping jacks”, based on the joint trajectories.

In the first step of our segmentation framework, the input
joint trajectories are converted into the parameters of a uni-
fied kinematic model by a four-pass UKF. After the UKF
processing, we select the most representative kinematic pa-
rameters that best capture the motion repetitions based on
the frequency analysis. The zero-velocity crossing detec-
tion is used to identify possible segmentation candidates in
each of the selected kinematic parameter sequences. Dur-
ing this step, multiple candidate points for segmentation
may be generated in various stages of the motion since the
human typically pauses briefly while transitioning between
different phases of motion. To consolidate the segmentation
points, we further apply an adaptive k-means clustering al-
gorithm to determine the boundaries of each repetition. The
framework of the proposed method is summarized in Figure
2.



3. Kinematic filtering with UKF
Since the human motion data may be captured by differ-

ent modalities which may have different skeletal configura-
tions, temporal sampling rates, and accuracy, transforming
the captured data to a unified kinematic representation can
alleviate the differences between the motion capture modal-
ities. Such representation can facilitate the development of
a generic motion segmentation approach. In this paper, we
extend the kinematic model proposed in [6] from upper ex-
tremity to a full-body kinematic model. The kinematic fil-
tering with UKF is intended to transform the motion data
of joint positions into the kinematic parameters while sup-
pressing noise. In this section, we briefly introduce the kine-
matic model and demonstrate its performance on the data
captured by the marker-based motion capture system and
Kinect.

3.1. Kinematic model

In motion analysis, the human body can be represented
by a series of bones connected via joints. We can thus create
a kinematic chain to model the motion of the limbs relative
to the selected root body segment (e.g. torso). The location
of each joint in the chain can be derived by its parent joint
position, rotation, and length of the bone segment which
connects the current joint to its parent. In this paper, we
model the upper extremity using a 6-DoF kinematic model
and the lower extremity by a 4-DoF kinematic model. Other
more or less complex models can also be used since our
segmentation approach is independent of the selected kine-
matic representation. Figure 3 shows the kinematic model
used in our analysis on the left upper and lower extremi-
ties. That model is the same for the right part. For the
upper extremity, the length of clavicle, humerus, and ra-
dius are denoted by lc, lh, lr, respectively. The shoulder
is modeled as a spherical joint, with three DoFs, which are
denoted by a triplet of angles, rsho = (rXsho, r

Y
sho, r

Z
sho),

representing the rotation angles about each axis. Two
DoFs denoted by rsca = (rXsca, r

Y
sca) are used to represent

the flexion/extension and abduction/adduction angles of the
scapula. Finally, a single DoF model is used to represent
the flexion/extension angle, relb, of the elbow joint.

Given the scapular position from the world origin, de-
noted by psca = (pXsca, p

Y
sca, p

Z
sca), and the joint positions

of shoulder (psho), elbow (pelb), and wrist (pwri), are rep-
resented by the following functions, respectively:

psho = H1(psca, lc, rsca), (1)

pelb = H2(psca, lc, lh, rsca, rsho), (2)

pwri = H3(psca, lc, lh, lr, rsca, rsho, relb). (3)

In (1), (2) and (3), H1, H2, and H3 are the kinematic trans-
formation functions for shoulder, elbow, and wrist, respec-
tively.

model.png

Figure 3. Overview of the temporal repetitive action segmentation
Kinematic model of human skeletal pose. The subscripts, “L” and
“R”, denote the left and right, respectively. The kinematic param-
eters are only labeled on the left upper and lower extremities. The
right upper and lower extremities share the same kinematic models
as the left ones.

As shown in Figure 3, the kinematic model of the lower
extremity is represented as follows: the length of pelvic, fe-
mur, and tibia are denoted by lp, lf , and lt, respectively. The
hip is modeled as a 3-DoF joints by rhip = (rXhip, r

Y
hip, r

Z
hip)

to represent the rotation about the three axes. A single
DoF model is used to represent the flexion/ extension an-
gle, rkne, of the knee joint. Given the hip joint position,
phip, the positions of knee (pkne) and ankle (pank) can be
derived by the two kinematic functions, H4 and H5, as fol-
lows:

pkne = H4(phip, lp, lf , rhip), (4)

pank = H5(phip, lp, lf , lt, rhip, rkne). (5)

3.2. Kinematic parameter estimation

In this paper, we apply a four-pass UKF to estimate the
kinematic parameters based on the input joint trajectories.
In the first two passes, the UKF is performed forward and
backward respectively. The state vector at time t, x(t), is
composed of all the kinematic parameters of the upper and
lower extremities. The observation vector, y(t), is concate-
nated by the coordinate vectors of the joints of the upper and
lower extremities. In order to adapt the kinematic model to
any type of motion, the state transition of each parameter
is modeled by a random-walk process. Therefore, the state
prediction and observation measuring functions of the for-
ward UKF can be represented as:

x(t) = x(t− 1) + η(t), (6)

y(t) = H(x(t)) + ξ(t). (7)



In (6) and (7), η(t) and ξ(t) denote the noise terms of
state transition and observation measurement, respectively.
The function H is the combination of the kinematic trans-
form functions H1 , H2, H3, H4, and H5. In the backward
filtering, the state prediction function is

x(t) = x(t+ 1) + η′(t), (8)

η′(t) as above denotes the noise term of the measuring
function. The observation function is kept the same as in
(7).

In the rigid-body kinematic model, the bone length of
each body segment should not change during movement.
Due to the noise of the motion data, especially in Kinect,
the bone lengths of the input data may vary considerably.
Since it is not practical to obtain the accurate bone length
of each person in advance, we thus perform the two more
passes of the filtering with UKF. In the second forward and
backward passes, the bone lengths, lc, lh, lr, lp, lf , and
lt are fixed to the optimized values which are the expecta-
tion of the estimated bone lengths obtained in the first two
passes. The corresponding state prediction parameters of lc,
lh, lr, lp, lf , and lt in η(t) and η(t) are set to zero during
the last two passes.

Figure 4 compares the joint angles derived from the input
joint trajectories and the output kinematic parameters. For
the data from the motion capture system (Figure 4a), the
joint angles derived from the input joint positions clearly
indicate periodic nature of the movement. After the trans-
formation, the joint angle curves maintain similar periodic
pattern as the input data. For the motion data captured by
Kinect (Figure 4b), the joint angles derived from the input
joint positions are much noisier, making it more difficult
to detect periodic characteristics as compared to the input
data from the motion capture system. After applying the
proposed model, the periodic patterns are much more pro-
nounced. This example clearly shows that the kinematic
model can convert the motion data captured with differ-
ent levels of accuracy into a unified representation that pre-
serves the periodicity and smoothness of the motion.

4. Repetition segmentation based on kinematic
modeltitle

In this section, we provide a detailed description of the
three steps for the repetition segmentation from the given
kinematic parameters.

4.1. Most representative kinematic parameter se-
lection

For a certain action, not all DoFs will be active. The
motion segmentation can thus be defined only by certain
parameters which exhibit periodic behavior. We refer to
these parameters as the most representative kinematic pa-
rameters.

(a) (b)
Figure 4. Joint angles of the shoulder and elbow calculated by the
input motion data and the output kinematic parameters, respec-
tively, horizontal axes represent the frame count, vertical axes rep-
resent the joint angle, (a) sequences captured by motion capture
system, (b) sequences captured by Kinect.

In order to select the most representative set of param-
eters, we propose a frequency domain ranking algorithm.
For each parameter, xi, we perform Fourier transform to
the temporal data, fi(t). Next, we normalize the amplitude
and obtain the frequency response, f̂i(ω). Here, t and ω
denote the time stamp and frequency, respectively. We sum
the power of all the kinematic parameters with respect to ev-
ery discrete frequency point and determine the nonzero fre-
quency with the maximum sum of the power. That nonzero
frequency with the maximum power is called the primary
frequency, ωp, which is also used to approximate the fre-
quency of the primitive action within the exercise sequence.
The primary frequency can be obtained as follows:

ωp = arg max
ω

∑
i

‖f̂i(ω)‖2. (9)

Figure 5 demonstrates an example for the primary fre-
quency detection. The curves in Figure 5a show the fre-
quency response amplitudes of the six parameters of the
upper extremity for a repetitive motion sequence. Figure
5b demonstrates the sum of the power for all the param-
eters with respect to the frequency. We can observe that
the power at the frequency six is the largest one for the
whole sequence. Therefore, the primary frequency for this
sequence is set to six. Subsequently, we sort all the param-
eters according to their power of the primary frequency. In
order to obtain robust repetition segmentation, we need to
select multiple parameters for segmentations rather than the
one with the largest power at the primary frequency. The
number of selected parameters is determined by the follow-
ing criterion. For the primary frequency, when the ratio be-
tween the accumulated power of the top M parameters and
the power sum of all the parameters is larger than the power
ratio threshold θ, we choose the top M parameters as the
input to the following segmentation steps.



(a) (b)
Figure 5. Frequency domain analysis of the kinematic parameters:
(a) Fourier transform of the kinematic parameters of right arm; (b)
power sum of all the kinematic parameters.

4.2. Segmentation point detection

During a repetitive action, the movement of the
limbs/joints often changes direction or pauses when tran-
sitioning from one cycle to the other. According to this ob-
servation, we develop a segmentation point detection algo-
rithm based on the zero-velocity crossing detection.

Due to the noise in the output parameter sequences of
UKF, especially for the noisy data captured by Kinect, it is
necessary to perform a band-pass filtering on each sequence
of the selected parameters to remove remaining jitter which
may adversely affect the performance of the zero-velocity
crossings detection. For the analysis shown in this paper, we
used a band-pass Butterworth filter. The center of the pass-
ing band window is set to the primary frequency obtained
in the previous step, and the window width is empirically
set to 3. The window width represents a tolerance to the
variability of the repetition segment lengths in a sequence.

After performing the band-pass filtering, we calcu-
late the first-order derivative {∆m(t),m = 1, 2, · · · ,M}
of the sequences of selected parameters, {x′m(t),m =
1, 2, · · · ,M}, representing the corresponding velocity. Ide-
ally, all the velocities should reach zero at the same time.
Because of noise, the zero-crossing detection criterion is re-
laxed to the squared sum of all the velocities reaching the
local minimum value which can be represented as

tc = arg min
t∈[t1,t2]

M∑
m=1

∆2
m(t)). (10)

In (10), [t1, t2] denotes a sliding window with overlap to
obtain the time stamp tc which achieves the local minimal
squared sum of velocities. Each tc is treated as a candidate
segmentation point of the motion sequences.

4.3. Adaptive k-means clustering

Since the motion sequence may contain multiple brief
pauses during the transitions between different phases of
motion, the zero-velocity crossing detector may detect mul-
tiple candidate points for the segmentation. The candidate
points will thus result in over-segmentation of the activity

sequence. The over-segmentation can be addressed by clus-
tering these points into several groups and partitioning the
sequences based on one group. However, as various motion
sequences may have different numbers of transitions within
one cycle, the number of the clusters is unknown and also
difficult to predict before processing the data. Therefore,
an adaptive k-means algorithm is proposed for the task of
candidate segmentation point clustering.

Suppose the number of the candidate segmentation
points is N . The input data samples to the clustering algo-
rithm are the vectors of the selected parameters for the can-
didate segmentation points. Denote the vector samples of
the candidate segmentation points as vn,(n = 1, 2, · · · , N).
If the number of the clusters is defined as K, all the candi-
date segmentation points will be classified into K classes
by the k-means clustering algorithm. Afterwards, the inter-
class and intra-class distances of such k-means clustering
can be defined by the following functions:

Jintra(K) =

K∑
k=1

N∑
n=1

gkn‖vn − uk‖2, (11)

Jinter(K) =

K∑
k=1

K∑
j=1

‖uj − uk‖2. (12)

In (11) and (12), uk denotes the center of the k-th cluster,
the parameters {gkn} in (11) form a binary indicator matrix,
ε{0, 1}K×N , such that gkn = 1 if the sample vn belongs to
cluster uk and zero otherwise. Therefore, the intra-class
distance is defined as the sum of the Euclidean distance be-
tween the n-th sample parametric vector and its correspond-
ing cluster center. On the other hand, the inter-class distance
is defined as the sum of the Euclidean distance between the
centers of any two clusters. As the optimal number of clus-
ters is unknown, the number of clusters, K∗, which also
represents the numbers of action phases, can be defined as
the one that can minimize the overall intra- and inter- class
distance cost function as:

K∗ = arg min
K

Jintra(K) + λ× Jinter(K), (13)

where the parameter λ = N/K2 in (13) is a weighting co-
efficient. Based on the empirical study, the largest K should
not exceed 10, and the distance cost function in (13) is usu-
ally a convex function. Therefore, the optimization problem
in (13) can be solved by an iterative search algorithm which
initializes K = 2 and increases K by one until the distance
cost function reaches the minimum value.

After obtaining the cluster number, the algorithm per-
form k-means clustering of all the candidate segmentation
points and generateK∗ groups of points. The final segmen-
tation points are selected as the points in the class which can



span majority of the frames in the sequences. The span of
one segmentation point is defined as the number of frames
whose distance to that segmentation point is less than ψ/ωp

, where ψ is the number of frames in that sequence and ωp

is the primary frequency. The overall span of one group
of candidate segmentation points is the number of frames
spanned by all the points in that group. Therefore, the final
selection criterion is defined as follows:

k∗ = arg max
1≤k≤K∗

(φ(tkc )). (14)

In (14), φ(tkc ) denotes the total frame number spanned by
the candidate segmentation points in the k-th group, k∗ de-
notes the index of the candidate segmentation point group.

Figure 6 demonstrates the results of the segmentation
point clustering on the sequence “clapAboveHead5Reps”
from HDM05 database [8]. The circular points in Figure
6a are the candidate segmentation points detected by the
zero-velocity crossing detector. The adaptive k-means clus-
tering results are shown in Figure 6b, where each point is
corresponding to one of the candidate segmentation points
in Figure 6a. All the points are finally classified into three
categories by the adaptive k-means clustering. Based on the
proposed selection criterion, we select points in the class
#2 for the final segmentation. Figure 6c demonstrates the
skeleton configurations corresponding to the labeled candi-
date segmentation points from Figures 6a and 6b. We can
observe that the corresponding skeleton configurations in
each cluster belong to the same state of activity.

(a) (b)

(c)
Figure 6. Adaptive k-means clustering of candidate segmentation
point clustering: (a) candidate segmentation points on the sum of
squared velocity curve; (b) clustering of the candidate segmenta-
tion points represented as 2D plot; (c) identified skeleton configu-
rations at the corresponding candidate segmentation points.

5. Experimental results
In this section we present experimental results on

the motion sequences captured by both motion cap-
ture system and Kinect. We select five sequences from
HDM05 [8] database: clapAboveHead5Reps, clap5Reps,
jumpingJack-3Reps, rotateArmsBothBackward3Reps,
elbowToKnee-3RepsLelbowStart. The first two sequences
contain 5 repetitions and the last three contain 3 repe-
titions. Each sequence is performed by 5 subjects. We
also collected our own repetitive motion database which
contains 10 repetitive exercises: Shallow Squats, Chair
Stands, Buddhas Prayer, Cops & Robbers, Abs in Knee
Lifts, Lateral Stepping, Clapping, Punching, Line Stepping,
and Pendulum, performed by 10 subjects where each
exercise action is repeated 5 times. The motion data were
recorded simultaneously by the optical motion capture
system and Kinect camera. In the reminder of this paper,
if not specified, the sequences from our database refer
to the motion data captured by Kinect. To obtain the
ground truth segmentation of actions into repetitions, we
manually segmented each skeletal sequence by observing
the corresponding video data and marking the frames that
correspond to the start/end of each repetition segment.

We evaluated three temporal repetition segmentation al-
gorithms, including the algorithm based on PCA and GMM
[1], HACA [16], and our proposed algorithm. The re-
sults of the segmentations are compared with the ground
truth, provided by the manual segmentation. For simplic-
ity, the above four methods are denoted by “PCA-GMM”,
“HACA”, “Proposed”, and “Manual” in the remainder of
the paper.

Figure 7 demonstrate repetition segmentation results for
the sequences from HDM05 database acquired by motion
capture system. Figures 7a and 7b show the results for the
sequence “clapAboveHead5Reps” performed by the two ac-
tors, “bd” and “dg”, respectively. Figures 7c and 7d show
the results for the sequence “jumpingJack3Reps”, also per-
formed by the same actors. For clarity, in each sequence,
only the frames with indices smaller than 400 are shown
in the figures. From the segmentation results, we can ob-
serve that, for the motion capture data with high preci-
sion, HACA and our proposed algorithm can obtain ap-
proximately the same segmentation as the manual approach.
However, PCA-GMM usually over-segments the sequences
and has considerable false detection rate of the segmen-
tation points. The over-segmentation is a result of high
similarity of the motion data of different repetitions, thus
making the features of different repetitions not distinguish-
able enough in the subspace generated by PCA and GMM.
Therefore, this method cannot robustly detect the transi-
tion between two repetitions unless the actor performed the
same action with quite different style.

Figure 8 demonstrate repetition segmentation results on



the Kinect captured motion sequences in our database. Fig-
ures 8a and 8b show the results of the sequence “Shal-
low Squats” which are performed by the two actors, #1
and #8, respectively. Figures 8c and 8d illustrate the re-
sults on the motion sequence “Cops & Robbers”, also per-
formed by the same two actors. For clarity, only the first
600 frames are shown in the figures. Based on the results
on the noisy Kinect motion capture data, our proposed al-
gorithm still obtains a robust repetition segmentation that
approximately matches the results of the manual segmenta-
tion. Similar to the results with HDM05 dataset, the PCA-
GMM algorithm still cannot distinguish the repetitions of
the same action. Therefore, this method generates sev-
eral false segmentation points with the Kinect motion se-
quences. Some under-segmentation appears in the results
generated by HACA. Compared to the results on the motion
capture data in HDM05 database, the performance of the
HACA approach on the noisy Kinect motion data degrades
significantly. Since HACA extracts the features based on
the joint angles which are obtained by the raw input of
the motion data, the noise in the raw motion data propa-
gates to the calculated joint angles, resulting in the under-
segmentation. Our proposed algorithm, on the other hand,
reduces the noise by both UKF and band-pass filtering. Fur-
thermore, only the most representative parameters are used
for the segmentation point detection, making the algorithm
more robust to noise in the input motion data.

We further evaluate the segmentation accuracy of the
three algorithms defined as follows:

α = 1/D

D∑
i=1

(1− ei/Li). (15)

In (15), ei denotes the absolute value of the difference be-
tween the i-th segment obtained by the selected segmenta-
tion algorithm and manual approach, Li denotes the length
the i-th segment obtained by manual approach, D denotes
the minimal number of segments between the selected al-
gorithm and the manual approach. In the case of α = 1,
the length of detected segments by the algorithm would be
the same as for the manual segmentation. Smaller α thus
corresponds to larger segmentation errors.

Table 1 shows the segmentation accuracy of the three
methods as compared to the manual approach on the motion
sequences from the HDM05 database. Table 2 shows the
segmentation accuracy of the three methods for the Kinect
captured motion sequences from our database. The values
in Tables 1 and 2 represent the average across all the ac-
tors performing each sequence. For the motion data from
motion capture database, our method achieves similar per-
formance as HACA, and outperforms PCA-GMM. For the
motion data in our database captured by Kinect, our ap-
proach still achieves the best performance among the three
approaches. Since HACA also suffers in case of noisy data

Motion sequences Our HACA PCA-
GMM

clapAboveHead5Reps 0.98 0.98 0.54
clap5Reps 0.95 0.94 0.48
jumpingJack3Reps 0.97 0.98 0.45
rotateArmsBothBackward3Reps 0.96 0.97 0.38
elbowToKnee3RepsLelbowStart 0.92 0.91 0.36
Average 0.96 0.96 0.44

Table 1. Segmentation accuracy of the sequences from HDM05
database acquired by motion capture system

Motion sequences Our HACA PCA-
GMM

Shallow Squats 0.93 0.43 0.37
Chair Stands 0.94 0.42 0.33
Buddha’s Prayer 0.91 0.43 0.35
Cops & Robbers 0.89 0.39 0.32
Abs in Knee Lifts 0.92 0.40 0.39
Lateral Stepping 0.87 0.38 0.35
Clapping 0.90 0.44 0.41
Punching 0.81 0.39 0.33
Line Stepping 0.88 0.47 0.43
Pendulum 0.85 0.46 0.40
Average 0.89 0.42 0.37

Table 2. Segmentation accuracy of the Kinect captured motion se-
quences from our database

as PCA-GMM, the performance of HACA is similar as that
of PCA-GMM, but significantly degraded compared to the
performance of HACA on the motion capture data.

To demonstrate the impact of the noisy motion data from
Kinect, we further evaluate the segmentation accuracy of
the three methods with the same sequences as Table 2 in
our database but acquired by motion capture system. The
results are summarized in Table 3. Compared to the per-
formance on the Kinect data, the accuracy of our approach
and PCA-GMM is slightly improved, while the accuracy of
HACA is improved significantly. This result confirms our
hypothesis that the noise in the Kinect capture data greatly
affects the performance of HACA. However, the accuracy
degradation of our method is much smaller compared to that
of HACA.

To verify the importance of the most representative kine-
matic parameter selection in our method, we perform the
segmentation with and without the selection step. For the
segmentation with kinematic parameter selection, the power
selection threshold was set to 0.9. Figure 9a and 9b illus-
trate the segmentation results on the sequences “clapOver-
Head5Reps” and “Shallow Squats”, respectively.

We observe that the proposed segmentation approach
with parameter selection obtains quite similar results as the



(a) action: “clapAboveHead5Reps”, actor: “bd” (b) action: “clapAboveHead5Reps”, actor: “dg”

(c) action: “jumpingJack3Reps”, actor: “bd” (d) action: “jumpingJack3Reps”, actor: “dg”

Figure 7. Temporal repetition segmentation results of the four approaches, Manual, Proposed, HACA [16], and PCA-GMM [1], on the
sequences from HDM05 database which are acquired by motion capture system.

(a) action: “Shallow Squats”, actor: #1 (b) action: “Shallow Squats”, actor: #8

(c) action: “Cops & Robbers”, actor: #1 (d) action: “Cops & Robbers”, actor: #8

Figure 8. Results of the temporal repetition segmentation using four different segmentation methods, Manual, Proposed, HACA [16], and
PCA-GMM [1], on the Kinect captured motion sequences from our database.

manual segmentation for both HDM05 and our databases.
The segmentation without the parameter selection results
in segmentation point shift and over-segmentation. The er-
rors are caused by the interference from the parameters with
inconsistent cyclic characteristics during the zero-velocity
crossing detection.

6. Conclusions

In this paper, we proposed an unsupervised temporal rep-
etition segmentation algorithm for human repetitive motion

analysis that can be applied to various input modalities. The
experimental results demonstrate that the proposed algo-
rithm achieves robust repetition segmentation performance
which is comparable to the labor-intensive manual segmen-
tation on both the high precision motion capture data and
the noisy motion data captured by the low-cost motion cap-
ture device like Kinect. Other state-of-the-art temporal ac-
tion segmentation algorithms cannot distinguish the seg-
ments of repetitive action, like PCA-GMM, or suffer from
the noise in the Kinect captured motion data, like HACA.
Since the proposed method is generic and unsupervised, it



Motion sequences Proposed HACA PCA-GMM
Shallow Squats 0.96 0.96 0.47
Chair Stands 0.96 0.98 0.43
Buddhas Prayer 0.96 0.98 0.42
Cops & Robbers 0.94 0.97 0.40
Abs in Knee Lifts 0.95 0.96 0.49
Lateral Stepping 0.92 0.94 0.44
Clapping 0.93 0.93 0.51
Punching 0.90 0.88 0.41
Line Stepping 0.93 0.97 0.53
Pendulum 0.90 0.89 0.50
Average 0.94 0.95 0.46

Table 3. Segmentation accuracy of the sequences acquired by mo-
tion capture system from our database

(a) action: “clapOverHead5Reps”, actor: “bd”

(b) action: “Shallow Squats”, actor: #1

Figure 9. Temporal repetition segmentation performance compar-
ison between the proposed algorithm with and without most rep-
resentative kinematic parameter selection.

can be widely applied to various motion capture modalities
and various types of repetitive human activities.
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