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Abstract—Human Activity Recognition (HAR) is a powerful
tool for understanding human behaviour. Pervasive sensors, such
as wearable devices, have an increasing market penetration and
generate a tremendous amount of data. The myriad of available
clinical and consumer-grade wearables generate a continuous
time series of a person’s daily physical exertion and rest. Applying
HAR to the activity time series can provide new insights by
enriching the feature set in health studies, and enhancing the
personalisation and effectiveness of health, wellness, and fitness
applications.

The analyses of complex health behaviours such as sleep,
traditionally require a time-consuming manual interpretation
by experts. This manual work is necessary due to the erratic
periodicity and persistent noisiness of human behaviour. In this
paper, we present a robust automated human activity recognition
algorithm, which we call RAHAR. We test our algorithm in
the application area of sleep research by providing a novel
framework for evaluating sleep quality and examining the corre-
lation between the aforementioned and an individual’s physical
activity. Our results improve the state-of-the-art procedure in
sleep research by 15% for area under ROC and by 30% for F1
score on average. However, application of RAHAR is not limited
to sleep analysis and can be used for understanding other health
problems such as obesity, diabetes, and cardiac diseases.

I. INTRODUCTION

Human Activity Recognition (HAR) is the understanding

of human behaviour from data captured by pervasive sensors,

such as cameras or wearable devices. It is a powerful tool

in medical application areas, where consistent and continuous

patient monitoring can be insightful. Wearable devices provide

an unobtrusive platform for such monitoring, and due to their

increasing market penetration, feel intrinsic to the user. This

daily integration into a user’s life is crucial for increasing the

understanding of overall human health and wellbeing, and is

referred to as the “quantified self” movement.

Wearables, such as actigraphy accelerometers, generate a

continuous time series of a person’s daily physical exertion and

rest. Ubiquitous monitoring presents substantial amounts of

data, which can (i) provide new insights by enriching the fea-

ture set in health studies, and (ii) enhance the personalisation

and effectiveness of health, wellness, and fitness applications.

By decomposing an accelerometer’s time series into distinctive

activity modes or actions, a comprehensive understanding of

an individual’s daily physical activity can be inferred. The

advantages of longitudinal data are however, complemented

by the potential noise in data collection from an uncontrolled

environment. Therefore, the data sensitivity calls for robust

automated evaluation procedures.

In this paper, we present a robust automated human activity

recognition (RAHAR) algorithm. We test our algorithm in

the application area of sleep science by providing a novel

framework for evaluating sleep quality and examining the

correlation between the aforementioned and an individual’s

physical activity. Even though we evaluate the performance of

the proposed HAR algorithm on sleep analysis, RAHAR can

be employed in other research areas such as obesity, diabetes,

and cardiac diseases.

II. RELATED WORK

HAR has been an active research area in computer vision

and machine learning for many years. A variety of approaches

have been investigated to accomplish HAR ranging from

analysis of still images and videos to motion capture and

inertial sensor data.

Video has been the most widely studied data source in

HAR literature. Hence, there exists a wealth of papers in this

particular domain. The most recent literature on HAR from

videos include trajectory-based descriptors [1]–[3], spatio-

temporal feature representations [4]–[6], feature encoding [7]–

[9], and deep learning [10]–[12]. Reviewing the extensive list

of video-based HAR studies, however, goes beyond the scope

of this study and we refer the reader to [13], [14] for a

collection of more comprehensive surveys on the topic.

Unlike HAR from video, existing approaches for HAR from

still images are somewhat limited, and range from histogram-

based representations [15], [16] and color descriptors [17] to

pose-, appearance- and parts-based representations [18] Guo

and Lai recently provided a comprehensive survey of the

studies on still image-based HAR in [19].
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Several techniques have been proposed, on the other hand,

for HAR from 3D data, encompassing representations based

on bag-of-words [20], eigen-joints [21], sequence of most

informative joints [22], linear dynamical systems [23], ac-

tionlets [24], Lie algebra embedding [25], covariance descrip-

tors [26], hidden Markov models [27], subspace view-invariant

metrics [28] and occupancy patterns [29], [30]. Aggarwal and

Xia presented a recent survey summarizing state-of-the-art

techniques in HAR from 3D data [31].

Unlike vision-based HAR systems, sensor-based HAR tech-

nologies commonly deal with time series of state changes

and/or various parameter values collected from a wide range

of sensors such as contact sensors, accelerometers, audio and

motion detectors, etc. Chen et al. [32] and Bulling et al. [33]

present comprehensive reviews of sensor-based activity recog-

nition literature. The most recent work in this domain includes

knowledge-based inference [34], [35], ensemble methods [36],

[37], data-driven approaches [38], [39], and ontology-based

techniques [40].

All of the aforementioned studies investigate recogni-

tion/classification of fully observed action or activity, e.g.,

jumping, walking, running, drinking, etc. (i.e., activities of

daily living), using well-curated datasets. However, thanks to

the “quantified self” movement, myriad of consumer-grade

wearable devices have become available for individuals who

have started monitoring their physical activity on a continuous

basis, generating tremendous amount of data. Therefore, there

is an urgent need for automatic analysis of data coming

from fitness trackers to assess the physical activity levels and

patterns of individuals for the ultimate goal of quantifying

their overall wellbeing. This task requires understanding of

longitudinal, noisy physical activity data at a rather higher

(coarser) level than specific action/activity recognition level.

Main challenges as well as opportunities of HAR from per-

sonalized data and lifelogs have been discussed in several

dimensions in [41].

There has been a number of initiatives to overcome the

challenge of collecting annotated personalized data to further

research on HAR from continuous measurement of real-world

physical activities [42], [43]. Even though such systems exhibit

a crucial attempt in furthering research in mining personalized

data, they have limited practical importance as they rely on

manual annotation of the acquired data. There has also been

recent attempts to automatically recognize human activities

from continuous personalized data [44]–[47]. However, most

of these studies are designed to recognize only a predefined

set of activities, and hence, not comprehensive and robust

enough to quantify the physical activity levels for the overall

assessment of individuals’ wellbeing.

III. PRELIMINARIES

In this section we present a description of the dataset and

the context-aware background and definitions used for our

application area.

A. Sleep Science Background

Sleep pattern evaluation is a paragon of cumbersome testing

and requires extensive manual evaluation and interpretation by

clinical experts. Unhealthy sleep habits can impede physical,

mental and emotional wellbeing, and lead to exacerbated

health consequences [49]. Since patient referral to sleep spe-

cialists is often based on self-reported abnormalities, exacer-

bation often precedes diagnosis.

Clinical diagnosis of complex sleep disorders involves a

variety of tests, including an overnight lab stay with oxygen

and brain wave monitoring (polysomnography and electroen-

cephalogram, respectively), and a daily sleep history log

with a subjective questionnaire. The daily sleep logs and

questionnaires are often found to be unreliable and incon-

sistent with actual observed activity. This is especially true

in adolescents [50]. The overnight stay allows specialists to

manually monitor the patient’s sleep period. This requires the

active involvement of a clinical sleep specialist. Furthermore,

the monitoring is only for one night and in a clinical setting,

rather than the patient’s own home. Using wearable devices

provides both a context-aware and longitudinal monitoring.

The inconvenience and inaccuracy of daily logs, coupled

with the invasiveness of an overnight lab stay, substantiate the

need and adoption of wearable devices for first pass diagnostic

screening. More generally, using our HAR approach with a

wearable device empowers users to self-monitor their sleep

patterns, and reform their activity habits for optimised sleep

and an improved quality of life.

B. Sleep Science Definitions

To apply our methodology to the area of sleep science, it

is important to note the definitions mentioned in this section.

In traditional sleep study literature, a sleep period is bounded

between the sleep-onset-time and sleep-awakening-time [51].

Experts characterise the sleep-onset-time as the first minute

after a self-reported bedtime, that is followed by 15 minutes

of continuous sleep [52]. We propose a modified definition,

that allows for automatic evaluation and deems sleep diaries

unnecessary. As a result, we can infer the “bedtime” of an

individual in reverse, based on their sedentary activity before

the onset of sleep. Epoch records that contain no triaxial

movement, 0 steps taken, and an inclinometer output of not

lying down, are candidate sleep records, and are further tested

for whether they are a component of the sleep period. We

define sleep-onset-time as the first candidate epoch record in

a series of 15 continuous candidate sleep minutes. Likewise,

the sleep-awakening-time is defined as the last epoch record

in a series of 15 continuous candidate sleep minutes, that is

followed by 30 continuous non-candidate sleep minutes, (i.e.

30 minutes of active awake time). The sleep period duration

can be computed as the time passed between sleep onset and

sleep awakening.

Within the sleep period, there are periods of unrest or

wakefulness. For example, when a user re-adjusts positions,

or uses the bathroom. If the duration of movement exceeds

5 consecutive minutes of activity, it is marked as a time of
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Fig. 1: Sleep science definitions on an example accelerometer data extract
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TABLE I: Relevant sleep science equations [51]

Sleep Period
[
Sleep Onset Time, Sleep Awakening Time

]

Sleep Period Duration ‖Sleep Awakening Time− Sleep Onset Time‖
Wake After Sleep Onset (WASO)

∑awake
n=onset ‖Wakefulness‖

Latency
[
Preceding Sedentary Time, Sleep Onset Time

]

Total Minutes in Bed ‖Sleep Awakening Time− Preceding Sedentary Time‖
Total Sleep Time ‖Sleep Period Duration−WASO− Latency‖
Sleep Efficiency Total Sleep Time/Total Minutes in Bed

“wakefulness.” The total sum of all moments of wakefulness

is referred to as wake-after-sleep-onset, also known as WASO.

Immediately preceding the start of the sleep onset, is the

time-in-bed, which quantifies the sedentary time an individual

spends before they have fallen asleep. This sedentary time can

be observed in the actigraph accelerometer data. The time that

the preceding sedentary activity begins until the time of the

sleep onset is called the sleep latency.

From the aforementioned values, total sleep time and an

overall sleep efficiency score can be deduced. Total sleep time

covers the defined sleep period, less the wake after sleep onset

time and less the latency. Lastly, sleep efficiency is the ratio

of total sleep time to total minutes in bed. All of the above

definitions are summarised in Table I, and visualised in Fig. 1.

In this study, we use sleep efficiency as the metric to measure

sleep quality [53] among other metrics such as latency, wake

after sleep onset, awakening index, total sleep time, etc. [54].

C. Data

Data was collected as part of a research study to examine

the impact of sleep on health and performance in adolescents

by Weil Cornell Medical College - Qatar. Two international

high schools were selected for cohort development. Student

volunteers were provided with an actigraph accelerometer,

ActiGraph GT3X+1, to wear on their non-dominant wrist,

continuously throughout the study (i.e. even when sleeping).

1http://actigraphcorp.com/support/activity-monitors/gt3xplus/

Deidentified data collected in the study were used in the

current analysis.

The ActiGraph GT3X+ is a clinical-grade wearable de-

vice that has been previously validated against clinical

polysomnography [48]. The device samples the user’s sleep-

wake activity at 30-100 Hertz. Currently sleep experts use

this device in conjunction with the accompanying software,

ActiLife2, to evaluate an individual’s sleep period. We evaluate

our results side-by-side with ActiLife’s results.

IV. METHODOLOGY

Our methodology for RAHAR is illustrated in Fig. 2. We

elaborate on the details of our algorithm below.

A. Pre-Processing

The accelerometer of choice, Actigraph GT3X+, sampled

each person’s activity at 30-100 Hertz. The stored data in-

cluded the triaxial accelerometer coordinates as well as a

computed epoch step count based on the vertical axis, and

post-processed inclinometer orientation. This raw data was

downloaded and aggregated to a minute-by-minute granularity.

An epoch of one minute was selected in order to optimise the

interpretability of the physical activity [55], as well as for

implementing the state-of-the-art cut point methodology [56].

In other contexts, a different granularity may be sufficient.

2http://actigraphcorp.com/products-showcase/software/actilife/
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Fig. 2: Classification labelling of each change point interval during an example awake time
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B. Automated Annotation and Segmentation

Due to the context of sleep disorders, sleep periods needed

to be annotated within the raw ActiGraph output. Candidate

sleep records, epochs with no triaxial movement, 0 steps taken,

and an inclinometer output of not lying down, were identified

in the time series and tested to find the sleep onset time,

and sleep awakening time. The details of this terminology

is elaborated in the preliminaries section. All test instances

that fell within these two boundary times, were annotated as

“Sleep,” and constituted the sleep period.

Whilst analysing the data, we found that several participants

had multiple sleep periods in a day, implying that they took

daily naps or followed a polyphasic, or biphasic, sleep pattern.

Upon closer analysis of the length and time of the sleep

period, no discernible patterns were visible. Thus we opted to

segment the time series by the end of a sleep period rather

than the traditional approach of segmenting by day. Each

sleep period was linked to its preceding activity, extending

until the previous sleep period. We refer to these segments as

sleep-wake segments. The result of this decision is that the

activity immediately before each sleep period is used for the

correlation analysis for its subsequent sleep period, rather than

the total for that day.

C. Activity Mode Detection

The actigraph accelerometer data contains post-filtered

“counts” for each of the axes. These counts quantify the

frequency and intensity of the user’s activity3. Using Troiano’s

cut point scale [56], the age of a user, and their accelerometer

triaxial count, each epoch is labeled with an intensity level:

Sedentary, Light, Moderate, or Vigorous. Since each epoch is

1 minute in length, this provides an unnecessary granularity

to an individual’s activity levels and is highly subject to noise.

We “smooth” the activity intensity levels over activity modes

using change point detection.

Once the time series is segmented into sleep-wake segments,

we identify the distinctive activity modes using the multi-

ple change point detection algorithm, hierarchical divisive

estimation [57]. We tested the change points to a statistical

significance level of 0.01 and used a maximum number of

random permutations of 99. Each change point result is treated

as the interval boundaries for distinctive activity modes.

Each sleep-wake segment now consists of a series of change

point intervals. The activity intensity classification label for

each change point interval is computed by taking the statistical

mode of the minute-by-minute labels over every epoch existing

3http://actigraphcorp.com/wp-content/uploads/2015/06/ActiGraph-White-
Paper What-is-a-Count .pdf
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Fig. 3: ROC curves for sleep efficiency

(a) RAHAR (b) Sleep Expert + ActiLife

TABLE II: Sleep efficiency results

AU-ROC F1 Score Accuracy Precision Recall / Sensitivity Specificity
SE+AL RAHAR SE+AL RAHAR SE+AL RAHAR SE+AL RAHAR SE+AL RAHAR SE+AL RAHAR

Ada 0.7489 0.8132 0.5574 0.6885 0.6966 0.7206 0.5667 0.9130 0.5484 0.5526 0.7759 0.9333
RF 0.8115 0.8746 0.6885 0.7500 0.7865 0.7647 0.7000 0.9231 0.6774 0.6316 0.8448 0.9333

SVM 0.7497 0.7895 0.3721 0.7077 0.6966 0.7206 0.6667 0.8519 0.2581 0.6053 0.9310 0.8667
LogR 0.5884 0.8649 - 0.6875 - 0.7059 - 0.8462 - 0.5789 - 0.8667

Average 0.7246 0.8355 0.5393* 0.7154* 0.7266* 0.7353* 0.6445* 0.8960* 0.4946* 0.5965* 0.8505* 0.9111*
* logistic regression (LogR) score is not included in averaging.

within the interval. Fig. 2 illustrates the classification labelling

of an individual’s awake time.

D. Modeling

In sleep science, sleep quality is defined by a number of

metrics, including total sleep time, wake after sleep onset,

awakening index, and sleep efficiency [54]. In our analysis,

we focus on sleep efficiency metric for our experiments [53].

Sleep efficiency is computed as a numerical value ranging

from 0 to 1. According to specialists, a sleep efficiency below

0.85 (i.e., 85%) indicates poor sleep quality. Thus, each sleep

period can be classified as having “good sleep efficiency” or

“poor sleep efficiency” [58].

To model the effect of daily physical activity on sleep, the

duration of each intensity level of activity was aggregated over

the sleep-wake segment. The percentage of awake time in each

mode was used as the model input.

V. EXPERIMENTS AND RESULTS

RAHAR is fundamentally a feature extraction algorithm

for HAR in the context of quantifying daily physical activity

levels of individuals. We therefore test the quality of activity

recognition by RAHAR as compared to an expert-based HAR

using a tool on continuous physical activity data from a

wearable sensor. Since there is no ground truth on human

activity in this context, our objective is to evaluate which HAR

approach leads to better quality models for sleep research,

i.e., models for predicting sleep quality, specifically, sleep

efficiency.

We selected four models for evaluating the performance of

RAHAR against the performance of an expert-based HAR

using a tool on the described actigraphy dataset: logistic

regression, support vector machines with radial basis function

kernel, random forest, and adaboost.

• Logistic Regression (LogR): We chose this model be-

cause it is an easily interpretable binary classifier. It is

also relatively robust to noise, which as explained earlier

is a complication on data collected in an uncontrolled

environment.4

• Support Vector Machine (SVM): This model was selected

because it, also, is a binary classifier. We chose a radial

basis function kernel, and so it differs from logistic

regression in that it does not linearly divide the data.

• Random Forest (RF): This model was tested as an alter-

native because of its easy straightforward interpretation,

which is particularly relevant in the healthcare or con-

4Even though we included logistic regression (LogR) in our experiments, it
is important to note that LogR model failed to stratify the dataset successfully
for the state-of-the-art baseline approach, and predicted all cases to be in a
single class. Therefore, we excluded LogR score of RAHAR from analysis
whenever corresponding LogR score of the state-of-the-art baseline approach
was not available.
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Fig. 4: Comparison of the performance of random forest model for each approach

(a) ROC (b) Sensitivity-Specificity

sumer domains. It also is not restricted to linearly dividing

the data.

• Adaboost (Ada): Lastly, Adaboost was tested because it

is less prone to overfitting than random forest.

For comparison purposes, we use the results from a sleep

specialist using ActiGraph’s ActiLife software as a baseline.

The sleep specialist segmentation of the ActiLife results uses

the preceding day’s activity for each sleep period, and aggre-

gates the activity to an epoch of an hour. ActiLife requires the

sleep specialist to manually adjust the sleep period boundaries,

and then automatically computes the efficiency and other sleep

metrics.

Figs. 3a and 3b show the ROC curves for RAHAR and the

sleep expert using ActiLife software (denoted as “SE+AL”),

while Table II summarises the results for both RAHAR and

SE+AL. One of the most important performance measures for

HAR is the area under ROC (AU-ROC). Based on AU-ROC

scores, both RAHAR and SE+AL performed best with random

forest model. Furthermore, SE+AL achieved an average AU-

ROC of 0.7246 whereas RAHAR achieved 0.8355, a 15%

improvement of AU-ROC score on average by our algorithm as

opposed to the sleep expert using ActiLife. With an AU-ROC

score of 0.5884 for SE+AL approach, the logistic regression

model was, however, unable to stratify the dataset, and so

predicted all cases to be in a single class. We considered this

to be a failure of the logistic regression model for this problem,

and thus, did not include its results in our discussion whenever

it was appropriate to do so. For this reason, the misleading

results have also been removed from Table II.

Another important performance measure for HAR is the F1

score, which is computed as the harmonic mean of precision

and recall (or sensitivity). According to Table II, RAHAR

performed better than SE+AL in terms of precision and sen-

sitivity for all models, and hence, yielded significantly higher

F1 scores. Specifically, F1 score for RAHAR, on average, was

0.7154 whereas it was 0.5393 for SE+AL (excluding logistic

regression in both cases), yielding a solid margin of about 0.18

points (i.e., more than 30% improvement). On the other hand,

the accuracy scores, on average, were 0.7353 for RAHAR and

0.7266 for SE+AL (again excluding logistic regression), and

exhibited a relatively less significant difference still in favour

of RAHAR.

VI. DISCUSSION OF RESULTS IN MEDICAL CONTEXT

In this section we discuss the results of the best performing

model and its broader impact to the area of sleep science.

As seen in Fig. 3 random forest and logistic regression were

the two best performing models with the RAHAR algorithm.

Based on the desired threshold value of true positive rate,

TPR, (i.e., sensitivity), either model could be preferred to

minimize false positive rate, FPR, (i.e., 1-specificity), which

is equivalent to maximising specificity. Random forest was

also the best performing model for the SE+AL approach as

mentioned earlier. If we compare the ROC as well as the

sensitivity-specificity plots of the best model of each approach

(i.e., random forest), we see that RAHAR outperforms SE+AL

almost always as illustrated in Fig. 4.

Table II also summarises sensitivity and specificity scores

for RAHAR and SE+AL. Average sensitivity score for SE+AL

and RAHAR across all models except logistic regression

were 0.4946 and 0.5965, respectively. In other words, average

sensitivity score for RAHAR is 20% higher than that of

SE+AL. As for specificity, RAHAR with an average score of

0.9111 outperforms SE+AL with an average score of 0.8505,

which corresponds to a 7% improvement.

As we seek to determine in our study whether a person had

a “good quality sleep” based on his physical activity levels

during awake period prior to sleep, a false positive occurs
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when the model predicts “good quality sleep” when the person

actually had a “poor quality sleep.” Therefore, the number of

false positives needs to be kept at a minimum for a desired

number of true positives. In other words, a high specificity

score is sought after while keeping the sensitivity score at

the desired level. As can be seen from Fig. 4b with this

perspective in mind, for a large range of sensitivity scores,

RAHAR achieved higher specificity scores almost all the time

than SE+AL did. For example, RAHAR achieved a sensitivity

score of 0.9 with a specificity score of 0.8 whereas SE+AL

remained at a specificity score of 0.6 for the same sensitivity

threshold.

In summary, RAHAR outperforms state-of-the-art proce-

dure in sleep research in many aspects. However, its appli-

cation is not limited to sleep and it can be used for under-

standing and treatment of other health issues such as obesity,

diabetes, or cardiac diseases. Moreover, RAHAR allows for

fully automated interpretation without the necessity of manual

input or subjective self-reporting.

Given the current interest in deep learning, a natural ques-

tion that may arise is why an approach based on feature

extraction and model building has been used instead of using

deep learning models directly on the raw sensor data for

HAR. In medical community, the explainability of a model

is of utmost important as the medical professionals are inter-

ested in learning cause-and-effect relationships and using this

knowledge to support their decision making processes. In this

particular case, for example, sleep experts are interested in

understanding how and when certain physical activity levels

effect sleep in order to make decisions to improve sleep

quality of individuals accordingly. However, it is an interesting

idea to explore deep learning to see what is the best model

from a model accuracy perspective to understand the limits

of the value of continuous monitoring of individuals’ physical

activity, not only from a medical perspective in particular but

also from a “quantified self” perspective in general.

VII. CONCLUSION

In this paper, we presented a robust automated human

activity recognition (RAHAR) algorithm for multi-modal phe-

nomena, and evaluated its performance in the application area

of sleep science. We tested the results of RAHAR against the

results of a sleep expert using ActiLife for predicting sleep

quality, specifically, sleep efficiency. Our model a) automated

the activity recognition, and b) improved the current state-of-

the-art results, on average, by 15% in terms of AU-ROC and

30% in terms of F1 scores across different models. Automating

the human activity recognition puts sleep science evaluation

in the hands of wearable device users. This empowers users

to self-monitor their sleep-wake habits, and take action to

improve the quality of their life. The improved results demon-

strate the robustness of RAHAR as well as the capabilities of

implementing the algorithm within clinical software such as

ActiLife.

The application of RAHAR is, however, not limited to sleep

science. It can be used to monitor physical activity levels and

patterns of individuals with other health issues such as obesity,

diabetes, and cardiac diseases. Besides, RAHAR can also be

used in the general context of the “quantified self” movement,

and provide individuals actionable information about their

overall fitness levels.
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