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Abstract. Responding to natural disasters, such as earthquakes, floods,
and wildfires, is a laborious task performed by on-the-ground emer-
gency responders and analysts. Social media has emerged as a low-
latency data source to quickly understand disaster situations. While
most studies on social media are limited to text, images offer more in-
formation for understanding disaster and incident scenes. However, no
large-scale image datasets for incident detection exists. In this work,
we present the Incidents Dataset, which contains 446,684 images an-
notated by humans that cover 43 incidents across a variety of scenes.
We employ a baseline classification model that mitigates false-positive
errors and we perform image filtering experiments on millions of so-
cial media images from Flickr and Twitter. Through these experiments,
we show how the Incidents Dataset can be used to detect images with
incidents in the wild. Code, data, and models are available online at
http://incidentsdataset.csail.mit.edu.

Keywords: image classification, visual recognition, scene understand-
ing, image dataset, social media, disaster analysis, incident detection

1 Introduction

Rapid detection of sudden onset disasters such as earthquakes, flash floods, and
other emergencies such as road accidents is extremely important for response
organizations. However, acquiring information in the occurrence of emergencies
is labor-intensive and costly as it often requires manual data processing and
expert assessment. To alleviate these manual efforts, there have been attempts to
apply computer vision techniques on satellite imagery, synthetic aperture radar,
and other remote sensing data [25, 60, 74, 14]. Unfortunately, these approaches
are still costly to deploy and they are not robust enough to obtain relevant data
under time-critical situations. Moreover, satellite imagery is susceptible to noise
such as clouds and smoke (i.e., common scenes during hurricanes and wildfires),
and only provides an overhead view of the disaster-hit area.
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On the other hand, studies show that social media posts in the form of text
messages, images, and videos are available moments after a disaster strikes and
contain information pertinent to disaster response such as reports of damages
to infrastructure, urgent needs of affected people, among others [13, 35]. How-
ever, unlike other data sources (e.g., satellite), social media imagery remains
unexplored, mainly because of two important challenges. First, image streams
on social media are very noisy, and disasters are not an exception. Even af-
ter performing a text-based filter, a large percentage of images in social media
are not relevant to specific disaster categories. Second, deep learning models,
that are the standard techniques used for image classification, are data-hungry,
and yet no large-scale ground-level image dataset exists today to build robust
computational models.

In this work we address these challenges and investigate how to detect nat-
ural disasters, damage, and incidents in images. Concretely, our paper has the
following three main contributions. First, we present the large-scale Incidents
Dataset, which consists of 446,684 scene-centric images annotated by humans as
positive for natural disasters (class-positives), types of damage or specific events
that can require human attention or assistance, like traffic jams or car accidents.
We use the term incidents to refer to the 43 categories covered by our dataset
(Sec. 3). The dataset also contains an additional set of 697,464 images annotated
by humans as negatives for specific incident categories (class-negatives). As dis-
cussed in Sec. 2, the Incidents Dataset is significantly larger, more complete, and
much more diverse than any other dataset related to incident detection in scene-
centric images. Second, using the full set of 1.1M images in our dataset, we train
different deep learning models for incident classification and incident detection.
In particular, we use a slightly modified binary cross-entropy loss function, which
we refer to as class-negative loss, that exploits our class-negative images. Our
experiments in Sec. 5 show the importance of using class-negatives in order to
train a model that is robust enough to be deployed for incident detection in real
scenarios, where the number of negatives is large. Third, we perform extended
incident detection experiments on large-scale social media image collections, us-
ing millions of images from Flickr and Twitter. These experiments, presented in
Sec. 6, show how our model, trained with the Incidents Dataset and the class-
negative loss, can be effectively deployed in real situations to identify incidents in
social media images. We hope that the release of the Incidents Dataset will spur
more work in computer vision for humanitarian purposes, specifically natural
disaster and incident analysis.

2 Related Work

Computer vision for social good. Existing vision-based technologies are
short of reaching out to diverse geographies and communities due to biases in the
commonly used datasets. For instance, state-of-the-art object recognition models
perform poorly on images of household items found in low-income countries [79].
To remedy this shortcoming, the community has made recent progress in areas
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Fig. 1. Example images from the Incidents Dataset. Incidents (left) happen in
many places (top), which we capture by having 43 incident and 49 place categories.
Notice that a car accident can occur on a beach, farm, highway, etc. The place categories
help by adding diversity to the dataset.

including agriculture [23, 62, 68, 40], sustainable development [36, 34, 81], poverty
mapping [59, 80, 77], human displacement [38, 39], social welfare [10, 26, 27, 51],
health [2, 50, 82], urban analysis [4, 11, 41, 52, 53, 85], and environment [42, 70].
These studies, among many others, have shown the potential of computer vision
to create impact for social good at a global scale.

Incident detection on satellite imagery. There are numerous studies that
combine traditional machine learning with a limited amount of airborne or satel-
lite imagery collected over disaster zones [78, 25, 14, 74, 63, 24]. For a detailed
survey, see [37, 17, 19, 60]. Oftentimes, these studies are constrained to particu-
lar disaster events. Recently, deep learning-based techniques have been applied
on larger collections of remote-sensed data to assess structural damage [30, 5,
20, 46, 83, 31] incurred by floods [56, 7, 67], hurricanes [47, 75], and fires [64, 21],
among others. Some studies have also applied transfer learning [71] and few-shot
learning [57] to deal with unseen situations in emergent disasters.

Incident detection on social media. More recently, social media has emerged
as an alternative data source for rapid disaster response. Most studies have
focused heavily on text messages for extracting crisis-related information [35,
66]. On the contrary, there are only a few studies using social media images for
disaster response [58, 15, 16, 54, 55, 3, 45, 61, 1]. For example, [54] classifies images
into three damage categories whereas [55] regresses continuous values indicating
the level of destruction. Recently, [3] presented a system with duplicate removal,
relevancy filtering, and damage assessment for analyzing social media images.
[45, 61] investigated adversarial networks to cope with data scarcity during an
emergent disaster event.

Incident detection datasets. Most of the aforementioned studies use small
datasets covering just a few disaster categories, which limits the possibility of
creating methods for automatic incident detection. In addition, the reported
results are usually not comparable due to lack of public benchmark datasets,
whether it be from social media or satellites [69]. One exception is the xBD



4 E. Weber et al.

dataset [32], which contains 23,000 images annotated for building damage but
covers only six disasters types (earthquake, tsunami, flood, volcanic eruption,
wildfire, and wind). On the other hand, [30] has many more images but their
dataset is constructed for detecting damage as anomaly using pre- and post-
disaster images. There are also datasets combining social media and satellite
imagery for understanding flood scenes [8, 9] but they have up to 11,000 images
only. In summary, existing incident datasets are small, both in number of images
and categories. In particular, incident datasets are far, in size, from the current
large datasets on image classification, like ImageNet [18] or Places [84], which
contain millions of labeled images. Unfortunately, neither ImageNet nor Places
covers incident categories. Our dataset is significantly larger, more complete, and
much more diverse than any other available dataset related to incident detection,
enabling the training of robust models able to detect incidents in the wild.

3 Incidents Dataset

In this section, we present the Incidents Dataset collected to train models for
automatic detection of disasters, damage, and incidents in scene-centric images.

Incidents taxonomy. We create a fine-grained vocabulary of 233 categories,
covering high-level categories such as general types of damage (e.g., destroyed,
blocked, collapsed), natural disasters including weather-related (e.g., heat wave,
snow storm, blizzard, hurricane), water-related (e.g., coastal flood, flash flood,
storm surge), fire-related (e.g., fire, wildfire, fire whirl), as well as geological
(e.g., earthquake, landslide, mudslide, mudflow, volcanic eruption) events, and
transportation and industrial accidents (e.g., train accident, car accident, oil
spill, nuclear explosion). We then manually prune this extensive vocabulary by
discarding categories that are hard to recognize from images (e.g., heat wave,
infestation, famine) or by combining categories that are visually similar (e.g.,
snow storm and blizzard, or mudslide and mudflow). As a result of this pruning
step, we obtain a final set of 43 incident categories.

Image downloading and duplicate removal. Images are download from
Google Images using a set of queries. To generate the queries and promote diver-
sity on the data, we combine the 43 incident categories with place categories. For
the place categories, we select the 118 outdoor categories of Places dataset [84]
and merge categories belonging to the same super-category (e.g., topiary garden,
Japanese garden, vegetable garden are merged into garden). After this process
we obtain 49 different place categories. By combining incident and place cate-
gories, we obtain a total of 43 incidents × 49 places = 2107 pairs. Each pair is
extended with incidents and places synonyms to create queries such as “car ac-
cident in highway” and “car wreck in flyover”, or “blizzard in street” and “snow
storm in alley.” We obtain 10,188 queries in total and we download all images
returned from Google Images for each query, resulting in a large collection of
6,178,192 images. After that, we perform duplicate image removal as follows: we
extract feature vectors from each image with a ResNet-18 [33] model trained on
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Fig. 2. Dataset composition. The number of positive and negative labeled incident
images is shown on the left and the distribution of images for (incident, place) combi-
nations is shown on the right. The dataset contains incidents in many different scenes.
White cells indicate the unlikely (incident, place) combinations for which the Incidents
Dataset does not contain any images (e.g., “car accident in volcano”).

Places [84] and we cluster duplicate images with a radius-based Nearest Neighbor
algorithm. This results in 3,487,339 unique images.

Image labeling. Images obtained through Google Images are noisy, and they
may not necessarily be relevant to the query they are downloaded for. Rather,
the results may contain non-incident images with similar appearances (e.g., air-
planes but not airplane accidents, fireplaces but not dangerous fires, bicycles and
not bicycle accidents, etc.), images with other incidents, or completely random
images. To clean the data we ask annotators to manually verify the images using
the Amazon Mechanical Turk (MTurk) platform. Workers are shown a batch of
images, and they have to answer whether each image belongs to a specific cate-
gory or not. In particular, the interface used for image annotation is similar to
[84]. Each image is annotated by one annotator. Each annotation batch contains
100 images, including 15 control images (10 positives and 5 negatives). Annota-
tion batches are accepted when the accuracy in the control images is above 85%.
Otherwise the annotations of the batch are discarded.

The images are annotated in several stages. First, we label 798,316 images
from the initial 3,487,339 image collection, using the queries the images are
downloaded from. For example, the images downloaded with the query “car ac-
cident in village” are labeled as positives or negatives for the class “car accident.”
This results in 193,648 class-positive incident images and 604,668 class-negatives.
Class-negative images are those that we know do not show a specific incident
class but they may contain another incident category. After the first annotation
stage, we train a temporary incident recognition model, as described in Sec. 4, to
determine which images to label next. We send images whose incident category
confidence scores were greater than 0.5 to MTurk to get more class-positive and
class-negative labels. This process is repeated until obtaining 446,684 positive
incident images. Finally, these 446,684 images are sent to MTurk for annotation
on place categories using the same interface. In this case, each image is assessed
for the place category of its original query (e.g., an image downloaded with
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the query “wildfire in forest” is labeled as positive or negative for the “forest”
category). Eventually, we obtain 167,999 images with positive place labels. The
remaining images have negative place labels.
Dataset statistics. The Incidents Dataset contains 1,144,148 labeled images in
total. Of these, 446,684 are class-positive incident images, 167,999 of which have
also positive place labels. Fig. 1 shows some sample images from our dataset.
Fig. 2 shows the number of images per incident, place, and combined (incident,
place). Although the common practice when collecting datasets is just to keep
images with positive labels, we will show in Sec. 4 and Sec. 5 that class-negative
images are particularly valuable for incident detection in the wild because they
can be used as hard negatives for training.

4 Incident model

In this section, we present our model for recognizing and detecting different
incident types in scene-centric images.
Multi-task architecture. The images in our Incidents Dataset are accompa-
nied with an incident and a place label (see Sec. 3). We choose to build a single
model that jointly recognizes incident and place categories following a standard
multi-task learning paradigm [12, 65, 73]. This architecture offers efficiency as
it can jointly recognize incidents and places, and we also did not observe any
difference in the performance when training a model for a single task. In our
experiments, we employ a Convolutional Neural Network (CNN) architecture
with two task-specific output layers. Specifically, our network is composed of
a sequence of shared convolutional layers followed by two parallel branches of
fully-connected layers, corresponding to incident and place recognition tasks.
Training with a cross-entropy loss. The standard and most successful strat-
egy for training an image classification model (either for incidents or places) is
to employ a cross-entropy loss on top of a softmax activation function for both
outputs of the network. Note that this is the standard procedure for single-label
classification of objects [18], scenes [84] or actions [73].

In our real-world scenario of detecting incidents in social media images, many
of the test scene-centric images do not belong to any of the incidents categories
and they should be classified as images with “no incident.” This can be handled
by adding an extra neuron in the output layer that should fire on “no incident”
images. Notice that this requires training the model with additional absolute
negative images, i.e., images that do not show any incident.
Training with a class-negative loss. Even during an incident, the number of
images depicting the incident is only a small proportion of all the images shared
in social media. For this reason, our task of finding incidents in social media
imagery is more closely related to that of detection [28, 49, 72] than classification.
In particular, our model must find positive examples out of a pool of many
challenging negatives (e.g. a chimney with smoke or a fireplace are not disaster
situations, yet they share visual features similar to our “with smoke” and “on
fire” incident categories). To handle this problem and mitigate false positive
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detections, either the training process can be improved [22, 43] or the predictions
can be adjusted at test time [48, 44]. For our task, we choose to modify our
training process to incorporate class-negatives.

In particular, similar to [22], we modify a binary cross entropy (BCE) loss to
use partial labels for single-label predictions. Our partial labels consist of both
the class-positive and class-negative labels obtained during the image annotation
process (Sec.3). Notice that class-negative images are, in fact, hard negatives for
the corresponding classes because of the way they were selected during labeling:
they are either false-positive results returned from the image search engine or
false-positive predictions with high confidence scores using our model. More
formally, we modify BCE by introducing a weight vector to mask the loss where
we’ve obtained partial labels. This is given by the equation:

Loss =
∑

xi,yi,wi∈X,Y,W

[wi[yi log(A(xi)) + (1− yi) log(1−A(xi))]] (1)

where A is the activation function (typically a sigmoid), X the prediction, Y the
target, and W the weight vector. X,Y,W ∈ RN , and N is the number of classes.

For a training image with a class-positive label, we set yi = 1 and W = 1N

because we can conclude all information is known (i.e., due to our single-label
assumption, the image is considered as negative for all the other classes). For a
class-negative training image of the class i, we set yi = 0 and wi = 1. We do
not set W = 1N in this case because we do not have ground truth positive or
negative labels for the rest of the classes (different incidents may or may not
appear in the image). Hence, for any unknown class j, i.e., j 6= i, we set wj = 0.

The final loss L is given by the sum of the incidents loss Ld and the place
loss Lp, where both Ld and Lp are given by Eq. (1).

5 Experiments on the Incidents Dataset

Data. We split the images of the Incidents Dataset into training (90%), valida-
tion (5%), and a test (5%). As a reference, the training set contains 1,029,726
images, with 401,875 class-positive and 683,572 class-negative incident labels,
and 151,665 class-positive and 265,415 class-negative place labels. Note that
an image may have more than one class-negative label. Since the number of
class-positive place labels is much lower than the number of class-positive in-
cident labels, we augment the training set with 42,318 images from the Places
dataset [84]. However, while training, we do not back-propagate the incidents
loss on the additional Places images (which have no incident) since we already
have class-negatives for the incidents that are better negative examples than
these images from Places with no incidents.

The test set contains 57,215 images, and we also construct an augmented test
set that is enriched with 2,365 extra images from Places that we assume contain
no incidents. Unlike other image classification datasets, our test set contains
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Table 1. Ablation study. Performance comparison of the proposed model under
different settings on both test sets. The best mAP is achieved by the model that uses
CN loss with additional Places images as well as class negatives.

Training with Test Set Augmented Test Set

Architecture Loss Class Negatives Additional Places Images Incident mAP Place mAP Incident mAP Place mAP

ResNet-18 CE X 62.04 47.85 60.60 53.60
ResNet-18 CN X 61.15 46.61 59.88 53.41
ResNet-18 CN X 66.59 46.59 65.39 52.82
ResNet-18 CN X X 66.35 46.71 65.76 62.04
ResNet-50 CN X X 67.65 47.56 67.19 63.20

class-negative images, which are important to evaluate the ability of a model to
detect incidents in test images.

Incident classification. We first evaluate the ability of our model to classify
an image to the correct incident category, using just the images from the test
set that belong to an incident category. Note that this experiment is similar to a
within-the-dataset classification task where every test image belongs to a target
category. We use a ResNet-18 [33] as backbone and train the model using the
class-negative loss. We evaluate the incidents classification accuracy only on the
part of test set that has positive incident labels. The top-1 accuracy is 77.3%,
while the top-5 accuracy is 95.9%. As a reference, the performance of the same
architecture trained on the same images but with a cross-entropy loss, which is
a more standard choice for this classification task, is only slightly better, with
78.9% top-1 and 96.3% top-5 accuracy.

Incident detection. We consider here a more realistic scenario of detecting in-
cidents in images, evaluating the performance of the model on the whole test set
that also includes images with negative labels. We measure this performance us-
ing the average precision (AP) metric, and we report the mean over all categories
(mAP) for both the incidents and the places.

The obtained results are shown in Tab. 1, that presents, in fact, an ablation
study exploring the use of different model architectures (ResNet-18 and ResNet-
50), losses (cross-entropy and class-negative), and training data. Each model is
pre-trained on the Places365 dataset [84] for the task of scene classification and
then fine-tuned with the corresponding Incidents training data until convergence
(at least 10 epochs). We used the Adam optimizer with an initial learning rate
of 1e-4 and a batch size of 256 images, with shuffling. For each model, we report
the incident and the place mAP on both the test set and the augmented test set.

We observe that the incident mAP significantly improves by 4.3% (on the test
set) to 5.2% (on the augmented test set) when we move from the cross-entropy
(CE) loss to the class-negative loss (CN) using the class negatives (first and
fourth row of Tab. 1). Fig. 3 shows some top-ranked images for three incident
categories by these two models. We can observe that, without using the class
negatives during training, the model is not able to distinguish the difference
between a fireplace and a house on fire or detect when a bicycle is broken because
of an accident. The bottom of Fig. 3 shows the change in AP per incident
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Fig. 3. Using the class-negative loss. Top confidence images for “airplane accident”,
“on fire”, and “bicycle accident” categories when training without (left) and with
(right) the class-negative loss. (Bottom) We report incident AP increments achieved
by our model over the baseline model.

category achieved by the CN model over the CE model. Notice that for nearly
all incident categories the AP is much higher with CN model.

As a reference, the performance of the CN loss without using any class neg-
atives, which corresponds to the standard BCE loss, is only less than 1% worse
than the CE (first and second row of Tab. 1). Using additional Places images
during training does not affect the incident detection but it vastly improves the
place detection, especially in the case of the augmented test set, where mAP
increases by 9.2% (third and fourth row of Tab. 1). Switching from a ResNet-18
to a deeper ResNet-50 architecture gives an extra final boost of incident mAP
performance by 1.3% (fifth row of Tab. 1).

To further demonstrate the improved performance of our model trained with
the CN loss (final), we compare it against the model trained with a CE loss
(baseline) on 208 hand-selected hard-negative images used for MTurk quality
control and not seen during training. Our final model recognizes 176 images cor-
rectly as true negatives with confidence score below 0.5 (85% accuracy) while the
baseline model predicts the majority of them as false positives (30% accuracy).

In Fig. 4, we investigate the changes in the confidence scores between the
baseline and final models. Fig. 4(left) displays some qualitative examples of
false positives for different incident categories. We observe that the confidence
scores significantly decrease when using the final model. More concretely, the
final model does not associate airplane features blindly to airplane accident,
does not confuse rivers with flood scenes, or does not mistake clouds as smoke.
Fig. 4(right) shows the distribution of confidence scores obtained by the base-
line and final models. Notice that a perfect detector should assign 0 score to
all of these images. Overall, this analysis shows, consistently with the other ex-
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0.010.970.011.00 0.051.00 0.020.98 0.000.97 0.320.90

0.020.92 0.000.96 0.010.93 0.350.88
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0.200.86 0.170.94

Fig. 4. GT negative test. (Left) Sample images withheld for quality control on
MTurk are GT negatives not seen by the model during training. We report the changes
in confidence scores between the baseline and final model below each image. (Right)
We visualize the distribution of confidence scores obtained by both models for all 208
GT negative images. Our final model is more conservative when predicting incident
confidence scores for hard-negative examples.

periments explained in this section, how our final model is more robust against
difficult cases, which is very important for filtering disaster images in the wild.

6 Detecting Incidents in Social Media Images

In this section, we examine how our incident detection model, trained with class-
negative loss, performs in three different real-world scenarios using millions of
images collected from two popular social media platforms: Flickr and Twitter.

6.1 Incident detection from Flickr images

The goal of this experiment is to illustrate how our model can be used to de-
tect specific incident categories in the wild. For this purpose, we use 40 million
geo-tagged Flickr images obtained from the YFCC100M dataset [76]. Since the
images have precise geo-coordinates from EXIF data, we can use our incident
detection model to filter for specific incidents and compare distance to ground-
truth locations. We evaluate only earthquake and volcanic eruption incidents
in this experiment as we could find reasonable ground-truth data to compare
the results. Specifically, we downloaded the GPS coordinates, i.e., latitude and
longitude, of volcanoes from the National Oceanic and Atmospheric Adminis-
tration (NOAA) website4 and a public compilation of earthquake epicenters5.
We employ an Accuracy@XKm metric [29] to determine whether the predicted
incident is correct or not. More concretely, we compute the percentage of images
within X Km from the closest earthquake epicenter or volcano, respectively. We
randomly sample images and report metrics for (i) unfiltered images, (ii) im-
ages with model confidence above 0.5, and (iii) images with model confidence

4 https://www.noaa.gov/
5 https://raw.githubusercontent.com/plotly/datasets/master/

earthquakes-23k.csv
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Fig. 5. Filtering Flickr images. (Top) Left: map visualization of Flickr image lo-
cations (complete unfiltered set). Right: random Flickr images. (Middle) Earthquake
filtering. Left: map visualization of the location of images filtered by the earthquake
category (earthquake epicenters are displayed as red dots). Middle: examples of images
filtered with the earthquake category. Right: Accuracy@XKm, defined as the percent
of images within X kilometers from an epicenter. When filtering with a confidence
threshold above 0.9 (green), images are much closer to epicenters than in the unfiltered
case (black). (Bottom) Volcanic eruptions and volcanoes, with the same structure as
the earthquake experiment.

above 0.9. Fig. 5 shows that detected earthquake and volcanic eruption incidents
appear much closer to expected locations when compared to random images.

6.2 Incident detection from Twitter images

In this experiment we aim to detect earthquakes and floods in noisy Twitter data
posted during actual disaster events. We collected data from five earthquake and
two flood events using event-specific hashtags and keywords. In total, 901,127
images were downloaded. Twitter GPS coordinates are not nearly as precise as
the Flickr ones, so we consider only the 39,494 geo-located images within 250
Km from either (i) the earthquake epicenter or (ii) the flooded city center.

For all seven events shown in Fig. 6, we use MTurk to obtain ground-truth
human labels (i.e., earthquake or not, and flood or not) for images within the
considered radius. Then, we compare the quality of the initial set of the keyword-
based retrieved Twitter images (unfiltered) to the quality of images retained by
our model (filtered). We report the average precision (AP) per event for both
earthquakes and floods. When considering all earthquake events and flood events,
we obtain a average AP of 73.9% and 89.1% compared to the baseline AP of
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Chennai 2015 Bangladesh 2017
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Earthquake 
Epicenter

Keyword-based retrieved tweets (Unfiltered) High confidence earthquake images (Filtered)

Fig. 6. Twitter image filtering. (Top) Experiment outline for the earthquake fil-
tering (we follow the same outline for floods): we consider all tweets within a 250 Km
radius of the epicenter of a specific event and then we filter the images for the earth-
quake category. Left part shows image examples and location of the unfiltered images,
while right part shows locations and examples of filtered images. (Middle) Locations
of unfiltered (top) and filtered images (bottom) are shown for each one of the seven
events (five earthquakes and two floods), respectively. (Bottom) Ground-truth labels
obtained from MTurk for each event are used to compute the AP for unfiltered (top
row) and filtered (bottom row) images. Notice that our model significantly outperforms
the unfiltered baseline.

11.9% and 28.2%, respectively. The baseline AP is the AP averaged over multiple
trials of randomly shuffling the images, and it is given as a reference.

6.3 Temporal monitoring of incidents on Twitter

In this section we demonstrate how our model can be used on Twitter data
stream to detect specific incidents in time. To test this, we downloaded 1,946,850
images from tweets containing natural disaster keywords (e.g., blizzard, tor-
nado, hurricane, earthquake, active volcano, coastal flood, wildfire, landslide)
from Aug. 23, 2017 to Oct. 15, 2018. To quantify detection results, we obtained
ground-truth event records from the “Significant Earthquake Database”, the
“Significant Volcanic Eruption Database”, and the “Storm Events Database”
of NOAA. The earthquake and volcanic eruptions ground-truth events are rare
global events, while the storms (floods, tornadoes, snowstorms and wildfires) are
much more frequent but reported only for the United States. We filter images
with at least 0.5 confidence and compare against the databases (Fig. 7).

For earthquakes and volcanic eruptions, we report average Relative Tweet
Increase (RTI) inspired by [6]. RTIe =

∑e+w
d=e Nd/

∑e−w
d=e Nd, where Nd is the

number of relevant images posted on day d, e is the event day (e.g., day of earth-
quake), and w is an interval of days. We use w = 7 for our analysis to represent
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Fig. 7. Finding peaks in earthquake tweets. (Top) Histogram of tweets obtained
from Twitter using natural disaster keywords from 2017-2018. Black lines indicate
periods of time when our data collection server was inactive. (Bottom) Number of
tweets with earthquake images per day after filtering with at least 0.5 confidence. For
significant earthquakes (above 6.5 magnitude), we notice an increase in earthquake
images immediately after the event. Furthermore, we notice a spike on July 20, 2018
not reported in the NOAA database. We manually checked the tweets and found images
referring to a severe flood in Japan, indicating that the flood damage may resemble
earthquake damage.

a week before and after an event. An RTI of 2 means that the average number
of tweets in the week following an event is twice as high as the average number
the week before. After filtering, the mean RTI (mRTI =

∑
e∈E RTIe/|E|) shows

an average of 2.42 folds increase in tweets the week after an earthquake and 1.31
folds after a volcanic eruption (Fig. 8).

We notice that the mRTI would be even better if the ground truth databases
were exhaustive. On Nov. 27, 2017 we detect the highest number of volcanic
eruption images, but observe no significant eruption in the database. Looking
into this, we found that Mount Agung erupted the same day, which caused the
airport in Bali, Indonesia to close and left many tourists stranded6.

For the more common events (e.g., tornadoes and snowstorms), we measure
the correlation between tweet frequency and event frequency. We normalize both
histograms, smooth with a low-pass filter, and report intersection over union
(IoU) for United States incidents in Fig. 8. We notice an increase in IoU after
filtering for flood, tornado, and snowstorm images. For wildfires, we notice a
decrease in IoU and attribute this to the large spike in tweets in December 2017.

6 https://en.wikipedia.org/wiki/Mount_Agung
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Fig. 8. Temporal tweet filtering results. (Rows 1-2) For frequent events in the
United States, we filter tweets for floods, tornadoes, snowstorms, and wildfires images
and compare with ground truth frequency events obtained from NOAA. (Bottom Left)
Filtered volcanic eruption images with ground truth events. (Bottom Right) Reported
mRTI for global events and IoU for common US events.

Frequency correlation does not represent damage extent. In fact, a destructive
wildfire occurred in California on Dec. 4, 2017 burning 281,893 acres7.

7 Conclusion

In this paper, we explored how to automatically and systematically detect dis-
asters, damage, and incidents in social media images in the wild. We presented
the large-scale Incidents Dataset, which consists of 446,684 human-labeled scene-
centric images that cover a diverse set of 43 incident categories (e.g., earthquake,
wildfire, landslide, tornado, ice storm, car accident, nuclear explosion, etc.) in
various scene contexts. Different from common practice, the Incidents Dataset
includes an additional 697,464 class-negative images which can be used as hard
negatives to train a robust model for detecting incidents in the wild. To that end,
we also used a class-negative loss that capitalizes on this phenomenon. We then
showed how the resulting model can be used in different settings for identifying
incidents in large collections of social media images. We hope that these contri-
butions will motivate further research on detecting incidents in images, and also
promote the development of automatic tools that can be used by humanitarian
organizations and emergency response agencies.
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