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ABSTRACT
We present a multi-camera system for audio-visual anal-

ysis of dance figures. The multi-view video of a dancing actor
is acquired using 8 synchronized cameras. The motion cap-
ture technique of the proposed system is based on 3D track-
ing of the markers attached to the person’s body in the scene.
The resulting set of 3D points is then used to extract the body
motion features as 3D displacement vectors whereas MFC
coefficients serve as the audio features. In the multi-modal
analysis phase, we perform Hidden Markov Model (HMM)
based unsupervised temporal segmentation of the audio and
body motion features such as legs and arms, separately, to
determine the recurrent elementary audio and body motion
patterns in the first stage. Then in the second stage, we in-
vestigate the correlation of body motion patterns with audio
patterns that can be used towards estimation and synthesis
of realistic audio-driven body animation.

1. INTRODUCTION

Human body motion analysis has been an interesting re-
search topic in computer vision due to its various applica-
tions, such as animation, athlete training, medical diagnos-
tics, virtual reality, and human-machine interfaces. In the
analysis of human body motion, three tasks are involved:
tracking and estimating the motion parameters, analyzing the
human body structure, and recognizing the motion activities.
For animation, detailed skeletal body models are commonly
applied.

Motion capture systems have continuously been evolving
and there exist already various techniques and approaches
in the literature, that can be distinguished mainly based on
whether they make use of markers (active or passive), or fully
rely on image features, and the type of motion analysis they
employ (model-based or not). The simultaneous recovery of
pose and body shape from video streams has been considered
[1]. Optical flow and probabilistic body part models were
used to fit a hierarchical skeleton to walking sequences [2].

Much previous work has been done in modeling complex
human motion model and they can be largely categorized
into two classes. The first class is by supervised learning.
Mixture motion model is used for tracking in [3]. But the
primitives are pre-defined and segmented manually for train-
ing. The second class of approach, unsupervised or semi-
unsupervised human motion modeling, avoids such tedious
and error prone process of manual segmentation. In [4],
HMM(Hidden Markov Model) is learnt for human locomo-
tion (walking, running). But the topology of the HMM is
given and it is difficult to extend it to more complex mo-
tion.In [5] HMM is used to analyze dance figures of a danc-

ing person. In [6], each primitive follows a different dynamic
law (acceleration) which can be used to differentiate each
other. Variable length Markov models (VLMM) [7] were
learnt to model human behavior. However, simple heuristics
such as low velocity points at the boundary of two primitives
was employed for segmentation. SLDS (switching linear dy-
namic systems) are learnt in [8] for classifying human mo-
tion.

In this work audio-visual analysis of dance figures is pre-
sented. 3D world points related to 16 human body joints are
used to analyze the correlation between the audio patterns
and body motion patterns according to [9, 5].

2. MULTICAMERA MOTION CAPTURE

Our motion capture technique employs an optical flow
method to record subject’s motion where a set of markers
are attached to the subject and then observed by a number
of cameras. These markers are located at 16 different points
on the body as can be seen in Figure 1. Markers in each
video frame are detected by applying thresholds over their
chrominance information. In this setting, the motion cap-
ture system determines the 3D position of each marker at
each frame by triangulation based on the observed projec-
tions of the markers onto each camera’s image plane. The
3D positions of the markers are tracked over the frames by
Kalman filtering where the filter states correspond to 3D po-
sition and velocity of each marker. The list of 3D points ob-
tained by back-projection of 2D points in respective camera
image planes constitute the observations for this filter. The
list of 3D marker positions over frames is our body model
features that will be used in the analysis and animation pro-
cess.

3. AUDIO-VISUAL DANCE ANALYSIS

In this section, a two-step analysis framework based on unsu-
pervised temporal segmentation is considered. The first stage
analysis aims to extract elementary audio patterns and body
motion patterns separately as left leg, left arm, right arm and
right leg. The correlation between these parts are determined
by the co-occurrence matrices. In the second stage analy-
sis, the correlation between audio patterns and body motion
patterns is investigated.

3.1 Body Motion Patterns
Body motion patterns are extracted from 3D displacement
vectors of 16 points located on the joints of the person’s body.
The displacement vectors are calculated relative to the refer-
ence frame after subtracting the rotational and translational



Figure 1: Dance scene captured by the 8-camera system available at Koç University. Markers are attached at or around the
joints of the body.

motions which can be represented as a transformation ma-
trix for the body as a whole. This transformation matrix is
calculated using the torso which is composed of four points
located on the hips, chest and back of the subject. Points are
defined in homogenous coordinates such as ~p1 = [x1y1z11].
The transformation matrix is calculated relative to the first
frame. Let M = [~p1~p2~p3~p4] be 4x4 invertible matrix com-
posed of initial locations of each torso joint. The locations
of these points in ith can be given in a similar matrix for-
mat, Mi = [~p′1~p

′
2~p
′
2~p
′
3]. The 4x4 transformation matrix Mpro j

is calculated as Mpro j = (Mi−~m)× (M−~m)−1 where ~m is
the mean of the points located on hips and shoulders in the
first frame. Each initial point in the first frame is projected
to the current frame by multiplying with the transformation
matrix Mpro j and features are calculated as the differences
of original point coordinates and the projected initial points,
i.e., Fb = Mpro j×~p0−~pi where ~pi and ~p0 are the location of
points in current and initial frames, respectively.

3.2 Audio Features
The act of dancing is the natural response of the body to the
rhythm of the sound. MFCCs are good choices for represent-
ing the audio features in our scenario since they approximate
the human auditory system’s response to the sound. Accord-
ing to these responses the movements of the body is shaped
and dance figures are generated that are correlated with the
audio.

3.3 Unsupervised Temporal Segmentation
The HMM structure Λ has M parallel branches and N states.
The parallel HMM Λ is composed of M parallel left-to-
right HMMs, {λ1,λ2, . . . ,λM}, where each λm is composed
of N states, {sm,1,sm,2, . . . ,sm,N}. The state transition ma-
trix Aλm of each λm is associated with a sub-diagonal matrix
of AΛ. The feature stream is a sequence of feature vectors,
F = {f1, f2, . . . , fT}, where ft denotes the feature vector at
frame t. Unsupervised temporal segmentation using HMM
model Λ yields L number of segments ε = {ε1,ε2, . . . ,εL}.
The lth temporal segment is associated with the following
sequence of feature vectors,

εl = {ftl , ftl+1, . . . , ftl+1−1} l = 1,2, . . . ,L (1)

where ft1 is the first feature vector f1 and ftL+1−1 is the last
feature vector fT . The segmentation of the feature stream
is performed using Viterbi decoding to maximize the prob-
ability of model match, which is the probability of feature
sequence F given the trained parallel HMM Λ,

P(F|Λ) = max
tl ,ml

L

∏
l=1

P({ftl , ftl+1, . . . , ftl+1−1}|λml )

= max
εl ,ml

L

∏
l=1

P(εl |λml ) (2)

where εl is the lth temporal segment, which is modeled by
the mth

t branch of the parallel HMM Λ. One can show that
λml is the best match for the feature sequence εl , that is,

ml = argmax
m

P(εl |λm) (3)

Since the temporal segment εl from frame tl to (tl+1− 1) is
associated with segment label ml , we define the sequence of
frame labels based on this association as,

`t = ml for t = tl , tl +1, . . . , tl+1−1 (4)

where `t is the label of the tth frame and we have a label se-
quence ` = {`1, `2, . . . , `T} corresponding to the feature se-
quence F. The first stage analysis extracts the frame label
sequences `b and `a given the body motion and audio feature
streams Fb and Fa.

The parallel HMM structure has two important parame-
ters to set before the training of the model Λ. The first pa-
rameter is the number of states in each branch, N. It should
be selected by considering the average duration of tempo-
ral patterns. N is selected to be NΛb = 10, assuming mini-
mum motion pattern duration is 1

3 sec (10 frames). On the
other hand, the number of temporal patterns for audio is set
to NΛa = 5 states in each branch of the audio HMM model
Λa to model audio patterns.

The second parameter is the number of temporal patterns
with the notation M. Finding an optimum value for M two
fitness measures are checked where the first fitness measure,



Figure 2: Results of iterative approach for selection of M for the body motion patterns, upper left graphics is for for left leg
and the upper right positioned graphics for right leg, left below graphics represents α and β measure for left arm and the
graphics located right below represents for right arm.

α , is the probability of model match and the second, β , is
the average statistical separation between two similar tempo-
ral patterns. The value determined for M would be helpful
for modeling the body motion patterns. Therefore, the to-
tal number of temporal patterns, M, can be selected in the
vicinity of the intersection of the normalized α and β mea-
sures.The definitions for these two measures are given below
in equations.

α =
1
T

log(P(F|Λ)) (5)

β =
1
T

L

∑
l=1

log(
P(εl |λml )
P(εl |λm∗l )

) (6)

where λm∗l is the second best match for the temporal seg-
ment εl , that is given as,

m∗
l = argmax

∀m6=ml

P(εl |λm) (7)

3.4 Multimodal Analysis
The first stage analysis defines elementary recurrent body
motion patterns for separate body parts using unsupervised
temporal clustering over individual feature streams. The
body motion feature streams Fb are used to train HMM struc-
ture Λb that captures recurrent body motion patterns εb. Au-
dio feature streams Fa are similarly used to train HMM struc-
ture Λa to capture recurrent audio patterns εa. For ease of no-
tation, we use a generic notation to represent the HMM struc-
ture which is identical for body motion and audio streams.

Figure 3: Results of iterative approach for selection of M for
the audio data.

In the second stage, we perform a joint analysis of body
motion-audio patterns and extract recurrent co-occurring pat-
terns. This joint correlation analysis will be based on the
co-occurrence matrix obtained from the co-occurring body
motion-audio events.

4. RESULTS

Figure 2 shows the plots obtained for α and β measures of
different body segments. For video, M is set as 3 which
is in the vicinity of the intersection of the normalized α
and β measures for separate body motion patterns. Hence,
our HMMs for body motion pattern analysis consist of 3



Table 1: Co-occurrence matrix for Left Arm-Right Arm
events in percentages.

LArma LArmb LArmc

RArma 95.65 0 4.35

RArmb 0 100 0

RArmc 16.67 8.33 75

Table 2: Co-occurrence matrix for Left Leg-Right Leg events
in percentages.

LLega LLegb LLegc

RLega 100 0 0

RLegb 0 100 0

RLegc 0 0 100

branches each. On the other hand, Figure 3 shows us that
M = 6 in the vicinity of the intersection of the normalized α
and β measures for the analysis of audio data.

Table 1 demonstrates the co-occurrence percentages be-
tween the left arm and the right arm motion patterns obtained
as a result of our first stage analysis. Each row in the table
displays the co-occurrence rates of different left arm motion
patterns with right arm motion patterns over the whole video.
According to this co-occurrence matrix, the left arm motion
pattern La, Lb and Lc highly co-occurs with Ra, Rb and Rc,
respectively. The dance figures related with both arm are la-
beled with same labels for similar figures where label a rep-
resents raising the arms up and then lowering them down,
b occurs as holding the arms above the shoulder and c is ob-
served as swinging arms forward and backward below shoul-
der.

Table 2 demonstrates the co-occurrence percentages be-
tween the left leg and right leg motion patterns obtained as
a result of our first stage analysis. Similarly we can see that
left and right arm are highly correlated and labels for similar
figures are the same. Label a represents the act of standing at
the same place with little bumps of legs, b occurs as pulling
the legs up with big steps and c is observed as walking slowly.
We can see from Table 3 that left leg and left arm has highly
correlated patterns that co-occurs frequently. Nevertheless,
we observe in Table 4 that right leg and right arm has highly
correlated patterns that co-occurs frequently.

As a result of second stage analysis we investigated the
correlation between body motion patterns and audio patterns.
Table 5 gives the co-occurrence percentages of right leg and
audio data patterns. Some motion patterns are highly cor-
related with audio patterns for instance RArmc highly co-
occurs with audio pattern Aa where A f is co-occurred with
a small percentages with the same pattern.

Table 3: Co-occurrence matrix for Left Arm-Left Leg events
in percentages.

LLega LLegb LLegc

LArma 94.6 2.7 2.7

LArmb 0 100 0

LArmc 0 0 100

Table 4: Co-occurrence matrix for Right Arm-Right Leg
events in percentages.

RLega RLegb RLegc

RArma 93.33 3.335 3.335

RArmb 0 100 0

RArmc 0 0 100

5. CONCLUSIONS AND FUTURE WORK

The co-occurrence tables tells us that arms are jointly corre-
lated, legs are jointly correlated and arms and legs are cor-
related jointly, as well. The temporal patterns of correlated
visual motion and audio should prove useful for synthetic
agents and/or robots to learn dance figures from audio.

For the future work, the set of Euler angles for each joint
can be used as the feature set instead of the displacements,
which will provide more robustness in calculation of torso ro-
tation and translation compensation. In addition to MFCCs,
other spectral properties such as ralloff, spectral centroid,
spectral flux and zero crossing can be used to investigate sep-
arate beats or rhythm information of the audio data.
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