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Abstract

Lack of global data inventories obstructs scientific modeling of and
response to landslide hazards which are oftentimes deadly and costly.
To remedy this limitation, new approaches suggest solutions based on
citizen science that requires active participation. In contrast, as a non-
traditional data source, social media has been increasingly used in many
disaster response and management studies in recent years. Inspired
by this trend, we propose to capitalize on social media data to mine
landslide-related information automatically with the help of artificial
intelligence techniques. Specifically, we develop a state-of-the-art com-
puter vision model to detect landslides in social media image streams in
real time. To that end, we first create a large landslide image dataset
labeled by experts with a data-centric perspective, and then, conduct
extensive model training experiments. The experimental results indi-
cate that the proposed model can be deployed in an online fashion to
support global landslide susceptibility maps and emergency response.
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1 Introduction

Landslides1 occur all around the world and cause thousands of deaths and
billions of dollars in infrastructural damage worldwide every year [1]. However,
landslide events are often under-reported and insufficiently documented due to
their complex natural phenomena governed by various intrinsic and external
conditioning and triggering factors such as earthquakes and tropical storms,
which are usually more conspicuous, and hence, more widely reported [2]. Due
to this oversight and lack of global data inventories to study landslides, Froude
and Petley assert that any attempt to quantify global landslide hazards and
the associated impacts is destined to be an underestimation [3].

Existing landslide detection and mapping solutions typically rely on data
from ground sensors or satellites. While sensor-based approaches can achieve
high accuracy at sub-catchment levels by monitoring land characteristics such
as rainfall, altitude, soil type, and slope [4, 5], their global-scale deployment
is impractical. Satellite-based approaches can provide more scalable solutions
by analyzing Synthetic Aperture Radar (SAR) or optical imagery [6, 7]. How-
ever, their deployment can still prove costly and time-consuming. Furthermore,
satellite data is susceptible to noise such as clouds.

Using Volunteered Geographical Information (VGI) as an alternative
approach, NASA launched a website2 in 2018 to allow citizens to report
about the regional landslides they see in-person or online [8]. Subsequent stud-
ies developed other means such as mobile apps to collect citizen-provided
data [9, 10]. However, these studies assume active participation of volunteers
to collect landslide data and still require time consuming work by specialists
directly engaging with the volunteers and interpreting the received data [11].

To alleviate the need for opt-in participation and manual processing, we
develop a state-of-the-art AI model that can automatically detect landslides
from social media images in real time. To achieve this goal, we first create a
large image dataset comprising 11,737 images from various data sources anno-
tated by domain experts following a data-centric AI approach described by
Whang et al. [12]. We then exploit this dataset in a comprehensive experimen-
tation searching for the optimal landslide model configuration (as in [13, 14]).
This exploration reveals interesting insights about the model training process.
The optimal landslide model achieves an accuracy of 90.6% on the validation
set, 87.0% on the held-out test set, and a striking 97.7% when applied on the
real-time Twitter image stream in the wild. Based on this model, we envision

1We refer to all downward and outward movement of loosen slope materials such as landslip,
debris flows, mudslides, rockfalls, earthflows, and other mass movements as landslides in this study.

2https://gpm.nasa.gov/landslides/index.html

https://gpm.nasa.gov/landslides/index.html
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a system that can harvest global landslide data and facilitate further research
for building global landslide susceptibility maps as suggested in [15, 16].

We make the following contributions:
• We collected the largest dataset of ground-level landslide images to date.
• We followed a data-centric AI approach to iteratively improve the quality
of the dataset.

• We conducted the most comprehensive experiments to date for training
deep learning models for landslide recognition.

• We built a prototype system and deployed our landslide detection model
in the real world to assess its performance in the wild.

• The prototype system offers global scalability by leveraging social media
data as a form of passive (i.e., opportunistic) crowdsourcing.

The rest of the paper is organized as follows. Section 2 reviews the rele-
vant literature, Section 3 introduces the dataset, Section 4 describes the model
training experiments, Section 5 summarizes the experimental results and find-
ings, Section 7 provides a discussion on existing limitations and future work,
and finally, Section 8 concludes the paper.

2 Related Work

The literature on landslide detection and mapping approaches mainly uses four
types of data sources: (i) physical sensors, (ii) remote sensing, (iii) volunteers,
and (iv) social networks. Sensor-based approaches rely on land characteristics
such as rainfall, altitude, soil type, and slope to detect landslides and develop
models to predict future events [4, 5]. While these approaches can be highly
accurate at sub-catchment levels, their large-scale deployment is extremely
costly.

Earth observation data obtained using high-resolution satellite imagery
has been widely used for landslide detection, mapping, and monitoring [6, 7].
Remote sensing techniques either use Synthetic Aperture Radar (SAR) or
optical imagery to identify landslides following various approaches from image
classification [17, 18] and segmentation [19, 20] to object detection [21, 22].
While remote sensing through satellites can be useful to monitor landslides
globally, their deployment can prove costly and time-consuming. Moreover,
satellite data is susceptible to noise such as clouds.

A few studies demonstrate the use of Volunteered Geographical Information
(VGI) as an alternative method to detect landslides [9, 23–25]. These studies
assume active participation of volunteers to collect landslide data where the
volunteers opt in to use a mobile app to provide information such as photos,
time of occurrence, damage description and other observations about a land-
slide event. In order to validate landslide photos collected by the volunteers,
Can et al. present an image classification model based on Convolutional Neu-
ral Networks (CNN) trained on a relatively small in-house dataset [24]. On the
contrary, our work aims to capitalize on massive social media data without
any active participation requirement and with better scalability. In addition,
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we construct a much larger dataset to train deep learning models and perform
more extensive experimental evaluations.

Social media data has been used in many humanitarian contexts ranging
from general social analytics [26] and geospatial sentiment analysis [27] to
incident detection [28] and rapid damage assessment [29], including multimodal
approaches [30]. However, its use for landslide detection has not been explored
extensively. To the best of our knowledge, no prior work has explored the use
of social media imagery to detect landslides. The most relevant studies by
Musaev et al. combine social media text data and physical sensors to detect
landslides [31, 32]. Specifically, they use textual messages collected through
a set of landslide-related keywords on Twitter, Instagram, and YouTube in
combination with sensor data about seismic activity and rainfall to train a
machine learning classifier that can identify landslide incidents. In this study,
we focus on analyzing social media images which can provide more detailed
information about the impact of the landslide event. To that end, our work is
orthogonal to prior art.

Finally, this paper is different from and complementary to our previous
papers [15, 16] in the following ways. In [15], we present a narrative from
a practitioner perspective that predominantly highlights existing limitations
and challenges in landslide research and proposes a high-level methodology
including data collection, processing, and annotation for an AI-based solution
without going into technical details of the machine learning aspects of the
problem. In [16], we focus on the system engineering aspects where we present
building blocks of an online system that can ingest social media data, eliminate
duplicate and irrelevant content as well as identify and geolocate landslide
reports. We also provide proper latency and throughput benchmark results for
each system component. The landslide detection model is covered very briefly
in this context. In this paper, on the other hand, we elaborate on all the
technical details about the machine learning model development aspects of the
problem through an extensive experimentation in search for the optimal model
selection and training configuration. To ensure the paper is self-contained, we
recapitulate the most relevant parts of our prior works here very briefly.

3 Dataset

To train models that can detect landslides in images, we curated a large
image dataset from multiple sources with diverse characteristics. We collected
some images from the Web using Google Image search with keywords such as
landslide, landslip, earth slip, mudslide, rockslide, rock fall and some images
from Twitter using similar landslide-related hashtags. We obtained additional
images from landslide specialists captured during field trips. The images
obtained from social media or the Web are usually noisy and can include dupli-
cates. Similarly, the images captured during field trips are not always useful
for model training. Therefore, the collected data is manually labeled by three
landslide experts, who are also co-authors of this study, following a data-centric
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LANDSLIDE NOT-LANDSLIDE

Twitter Google Field Twitter Google Field

Fig. 1: Example images from the dataset

AI [12] approach that suggests focusing on the data pipeline which typically
involves (i) curating a dataset for labeling based on model performance after
every iterative cycle to address the model’s specific weaknesses and (ii) sig-
nificantly increasing performance with a relatively small amount of training
data, as elaborated in [15]. Since the AI task at hand is “given an image, rec-
ognize landslides” (i.e., no other external information or expert knowledge is
available to the AI model), the experts were instructed to keep this computer-
vision perspective in mind and label only the most evident cases as “landslide”
images (i.e., the images where the landslide is the main theme exhibiting sub-
stantial visual cues for the model to learn from). On the other hand, since
our ultimate goal is to develop a system that will continuously monitor the
noisy social media streams to detect landslide events in real time, we retained
negative (i.e., not-landslide) images that illustrate completely irrelevant cases
(e.g., cartoons, advertisements, selfies) as well as difficult scenarios such as
post-disaster images from earthquakes and floods in addition to other natural
scenes without landslides in the final dataset. The complete dataset creation
process includes several rounds of model training, error analysis, expert dis-
cussions, and label updates. The final dataset contains 11,737 images. Some
example images are shown in Fig. 1. The distribution of images across data
sources is summarized in Table 1 and the data splits are presented in Table 2.
As suggested by Table 2, only about 23% of the images are categorized as
“landslide.” Our dataset is currently the largest dataset for landslide recog-
nition from ground-level images. To assess the quality of the final labels, we
measured the inter-annotator agreement using two statistical measures: Fleiss’
Kappa [33] and percentage agreement (observer agreement). Despite the inher-
ent difficulty of the task, the experts achieved an overall Fleiss’ Kappa of 0.58,
which indicates an almost substantial inter-annotator agreement. They also
achieved a percentage agreement of 76%, which is only slightly below the 80%
mark set as a rule-of-thumb by Bayerl and Paul [34].
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Table 1: Distribution of images across data sources

Training Validation Test Total

Google 4,398 628 1,258 6,284
Twitter 807 115 231 1,153
Field 3,010 430 860 4,300

Total 8,215 1,173 2,349 11,737

Table 2: Data splits (70:10:20)

Training Validation Test Total

Landslide 1,883 271 536 2,690
Not-landslide 6,332 902 1,813 9,047

Total 8,215 1,173 2,349 11,737

4 Landslide Model

Many computer vision tasks have greatly benefited from the recent advances
in deep learning. The features learned in deep convolutional neural networks
(CNNs) are proven to be transferable and quite effective when used in other
visual recognition tasks [35–37], particularly when training samples are lim-
ited. Considering we also have limited training examples for data-hungry
deep CNNs, we follow a transfer learning approach to adapt the features and
parameters of the network from the broad domain (i.e., large-scale image
classification) to the specific one (i.e., landslide classification). However, it is
often overlooked how complex the transfer learning setup can become with all
different possible configurations and hyperparameters to tune for optimal per-
formance. To this end, [13, 14] present exemplary studies on empirical analysis
of the impact of different training strategies on the performance of ResNet
architecture where they explore training recipes with different loss functions,
data augmentation, regularization, and optimization techniques, among others.
Inspired by these studies, we conduct extensive experiments where we train
several different deep CNN architectures using different optimizers, learning
rates, weight decays, and class balancing strategies.

CNN Architecture. The CNN architecture (arch) plays a significant role on
the performance of the resulting model depending on the available data size
and problem characteristics. Therefore, we explored a representative sample
of well-known CNN architectures including VGG16 [38], ResNet18, ResNet50,
ResNet101 [39], DenseNet [40], InceptionNet [41], and EfficientNet [42], among
others.

Optimizer. An optimizer (opt) is an algorithm or method that changes the
attributes of a neural network (e.g., weights and learning rate) in order to
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reduce the optimization loss and to increase the desired performance met-
ric (e.g., accuracy). In this study, we experimented with the most popular
optimizers, i.e., Stochastic Gradient Descent (SGD) and Adam [43].

Learning rate. Learning rate (lr) controls how quickly the model is adapted
to the problem. Using a too large learning rate can cause the model to con-
verge too quickly to a suboptimal solution whereas a too small learning rate
can cause the process to get stuck. Since learning rate is one of the most
important hyperparameters and setting it correctly is critical for real-world
applications, we performed a grid search over a large range of values (i.e.,
{10−2, 10−3, 10−4, 10−5, 10−6}).
Weight decay. Weight decay (wd) controls the regularization of the model
weights, which in turn, helps to avoid overfitting of a deep neural network on
the training data and improve the performance of the model on the unseen
data (i.e., better generalization ability). In light of this, we experimented with
a large range of weight decay values (i.e., {10−2, 10−3, 10−4, 10−5}).
Class balancing. An imbalanced dataset can bias the prediction model
towards the dominant class (i.e., not-landslide) and lead to poor performance
on the minority class (i.e., landslide), which is not ideal for our application.
The approaches to tackle this problem range from generating synthetic data to
using specialized algorithms and loss functions. Here, we explored one of the
basic approaches, i.e., data resampling, where we oversampled images from the
landslide class (i.e., sampling with replacement) to create a balanced training
set.

Other training details. We ran all our experiments on Nvidia Tesla P100
GPUs with 16GB memory using PyTorch library.3 We adjusted the batch size
according to each CNN architecture in order to maximize GPU memory uti-
lization. We used a fixed step size of 50 epochs in the learning rate scheduler
of the SGD optimizer and a fixed patience of 50 epochs in the ‘ReduceLROn-
Plateau’ scheduler of the Adam optimizer, both with a factor of 0.1. All of
the models were initialized using the weights pretrained on ImageNet [44] and
trained for a total of 200 epochs. Consequently, we trained a total of 560 CNN
models in our quest for the best model configuration.

5 Results

Due to limited space, Table 3 presents results only for the top perform-
ing 10 model configurations on the validation set ranked based on Matthew
Correlation Coefficient (MCC), which is regarded as a balanced measure for
imbalanced classification problems [45] and defined by Equation 1.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (1)

3https://pytorch.org/

https://pytorch.org/
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Table 3: Top-10 configurations based on MCC on the validation set

Opt Arch CB LR WD Acc Prec Rec F1 MCC

Adam ResNet50 ✗ 10−4 10−3 0.906 0.821 0.760 0.789 0.730
SGD ResNet101 ✗ 10−3 10−5 0.905 0.835 0.731 0.780 0.722
SGD ResNet101 ✓ 10−2 10−5 0.904 0.821 0.745 0.781 0.721
SGD ResNet50 ✗ 10−3 10−3 0.905 0.838 0.727 0.779 0.721
SGD DenseNet ✗ 10−2 10−4 0.902 0.800 0.768 0.783 0.720
Adam ResNet50 ✗ 10−4 10−2 0.903 0.834 0.723 0.775 0.716
SGD ResNet50 ✓ 10−2 10−5 0.903 0.834 0.723 0.775 0.716
SGD EfficientNet ✗ 10−2 10−3 0.897 0.768 0.793 0.780 0.713
Adam ResNet101 ✗ 10−4 10−3 0.902 0.845 0.705 0.769 0.712
Adam ResNet101 ✓ 10−4 10−5 0.899 0.802 0.745 0.772 0.708

where TP is the number of true positives, TN the number of true neg-
atives, FP the number of false positives, and FN the number of false
negatives. Besides MCC, we also compute common performance metrics such
as Accuracy, Precision, Recall, and F1-score as defined by Equations 2-5,
respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
, (2)

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)

F1 =
2TP

2TP + FP + FN
. (5)

The top-performing model configuration (i.e., arch: ResNet50, opt: Adam,
lr: 10−4, wd: 10−3, no class balancing) achieves MCC=0.730, F1=0.789, and
Accuracy=0.906, all deemed plausible by the specialists. Nevertheless, we
investigate the full table of results and identify the following insights:

• When everything but the optimizer is kept fixed, the models trained
with the Adam optimizer outperforms the models trained with the SGD
optimizer (179 vs. 100). This confirms the general sentiment that the
adaptive and stable nature of the Adam optimizer necessitates less effort
to achieve convergence and attain superior training outcomes than the
SGD optimizer.

• Despite the fact that top-performing model is trained without a class bal-
ancing strategy, the overall trend indicates that, while everything else is
the same, the models trained with class balancing yield better perfor-
mance than those trained without class balancing (173 vs. 103). This is
inline with the general understanding that class balancing can prevent
the models from becoming biased towards the majority class, and hence,
generate higher accuracy models.
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Table 4: Performance comparison of CNN architectures

Architecture mean(MCC) std(MCC) Avg. Rank

ResNet50 0.5384 0.2059 2.7625
ResNet101 0.5350 0.1975 2.9875
VGG16 0.5267 0.2026 3.2125
DenseNet 0.5219 0.1993 3.6125
EfficientNet 0.4951 0.2267 4.0625
ResNet18 0.4956 0.2065 4.7000
InceptionNet 0.3516 0.1758 6.6625

• ResNet50 architecture tops the rankings among all CNN architectures
by achieving the best average ranking as well as the highest mean MCC
according to Table 4. Between the ResNet architectures, given that the
training dataset is relatively small, ResNet18 offers inadequate capacity
for the problem at hand whereas ResNet101 offers potentially more-than-
enough capacity which increases the risk of overfitting and hurts the
performance. However, the overall differences between architectures do
not seem significant except for InceptionNet which yields a significantly
poorer performance than others. This is potentially because the Incep-
tionNet architecture generally requires more data to overcome possible
overfitting and more computational resources.

• The impact of the learning rate on model performance shows opposite
trends for different optimizers. As per Table 5, smaller learning rates
(e.g., {10−6, 10−5, 10−4}) seem to work better with the Adam optimizer
whereas larger learning rates (e.g., {10−2, 10−3}) seem to work better
with the SGD optimizer. This is because when the SGD optimizer is
initialized with a very small learning rate, the training progress becomes
very slow and tends to stagnate at a sub-optimal local minimum due to
the scheduled learning rate updates at regular intervals. In contrast, the
Adam optimizer typically operates better with a smaller learning rate
since it ensures a more stable adaptation during training.

• As expected, the value of the weight decay also impacts the overall per-
formance significantly (in particular, for the Adam optimizer). A large
weight decay (e.g., 10−2) hurts the overall performance which tends to
improve as the weight decay takes on smaller values (see Table 6). This
implies that larger weight decay values cause excessive regularization of
the weights, which in turn, reduces the model’s ability to learn properly.

To illustrate the effectiveness of the transfer learning approach, we created
t-SNE [46] visualizations of the feature embeddings before and after the train-
ing of the best-performing model. As shown in Fig. 2, the original ResNet50
model pretrained on ImageNet can distinguish landslide from not-landslide
images neither in the training (Fig. 2a) nor in the validation set (Fig. 2b).
However, after finetuning the model on the target landslide dataset, the result-
ing feature embeddings show almost perfect separation of the classes in the



Springer Nature 2021 LATEX template

10 Landslide Detection in Real-Time Social Media Image Streams

Table 5: Effect of the learning rate on overall performance

Adam Learning Rate SGD

(mean) (std) (mean) (std)
0.5812 0.0660 10−6 0.0947 0.1239
0.6077 0.0708 10−5 0.3335 0.1825
0.6495 0.0725 10−4 0.5597 0.0904
0.5438 0.1223 10−3 0.6287 0.0710
0.3178 0.2026 10−2 0.6325 0.0822

Table 6: Effect of the weight decay on overall performance

Adam Weight Decay SGD

(mean) (std) (mean) (std)
0.5772 0.1270 10−5 0.4586 0.2369
0.5685 0.1284 10−4 0.4594 0.2368
0.5462 0.1409 10−3 0.4555 0.2441
0.4681 0.2263 10−2 0.4258 0.2415

Table 7: Performance comparison of the best model on the validation and
test sets

Set Accuracy Precision Recall F1-score MCC

Validation 0.906 0.821 0.760 0.789 0.730
Test 0.870 0.737 0.668 0.701 0.619

training set (Fig. 2c) and a reasonably well separation in the validation set
(Fig. 2d).

When applied on the held-out test set, the best-performing model achieves
MCC=0.619, F1=0.701, and Accuracy=0.870 as opposed to MCC=0.730,
F1=0.789, and Accuracy=0.906 achieved on the validation set (Table 7).
Although the difference in accuracy is relatively small, the difference in MCC
and F1 are considerably large due to significant drops in precision and recall
of the model on the test set. This phenomenon can be explained by the more-
than-twice increase in the false positive (128 vs. 45) and false negative (178 vs.
65) predictions of the model on the test set, potentially as a result of model
overfitting to the validation set (Table 8).

To have a better understanding of the inner workings of the model, we
investigated class activation maps [47], which highlight the discriminative
image regions that the CNN model pays attention to decide whether an image
belongs to landslide or not-landslide class. Fig. 3 demonstrates example visu-
alizations for all four cases, i.e., true positives, true negatives, false positives,
and false negatives. The visualizations for the true positive predictions indi-
cate that the model successfully localizes the landslide regions (e.g., rockfalls,
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(a) Training set before finetuning (b) Validation set before finetuning

(c) Training set after finetuning (d) Validation set after finetuning

Fig. 2: Feature embeddings before/after model finetuning

Table 8: Confusion matrices for the validation and test sets

Prediction
Ground Truth Landslide Not-landslide

Validation (10%)
Landslide 206 65
Not-landslide 45 857

Test (20%)
Landslide 358 178
Not-landslide 128 1,685

earthslip, etc.) in the images. Similarly for the true negative predictions, the
model focuses on areas that do not show any landslide cues, successfully avoid-
ing tricky conditions such as muddy roads, wet surfaces, and natural rocky
areas on a beach. However, in both false positive and false negative predictions,
we observe that the errors occur mainly because the model fails to localize its
attention on a particular region in the image, or is tricked by the image regions
that are reminiscent of landslide scenes. This analysis suggests that there is
room for improvement where we can train more robust models by enriching
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TRUE POSITIVES FALSE NEGATIVES

FALSE POSITIVES TRUE NEGATIVES

Fig. 3: Class activation maps of the model predictions on the test set.

the training set with additional hard negative and hard positive images. For
instance, we can add more images of forest areas without any landslides to
reduce false positives and more images of small-scale landslides to reduce false
negatives.

6 Real-World Deployment

We have developed a proof-of-concept system as presented in [16]. In a nut-
shell, the system (i) collects live tweets from the Twitter Streaming API4 that
match landslide-related keywords in multiple languages, (ii) extracts image
URLs from the tweets (if any) and downloads images, (iii) runs the downloaded
images through filtering models to eliminate duplicate and irrelevant content,
(iv) runs the remaining images through the landslide model to tag each image
as landslide or not-landslide, and finally, (v) displays the results on a dash-
board for specialists’ examination. The system has collected almost 4.5 million
images since its deployment in February 2020. However, only about 30,000
images have been labeled as landslide, which corresponds to less than 1% of
the total volume. This indicates the difficulty of the task even though a care-
fully curated set of landslide-related keywords has been used to collect data
from Twitter. To validate the performance of the landslide model in the wild,
the specialists reviewed a random subset of the collected images (N=3,600)
and assigned ground truth labels. We then re-computed performance scores
for the real-world evaluation of the model (Table 9). Satisfactorily, the model
achieves a comparable performance to our experiments, and more importantly,
generalizes well to a challenging real-world scenario.

7 Discussion

4https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data

https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
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Table 9: Evaluation of the real-world performance

TP FP FN TN TOTAL

123 39 43 3,395 3,600

Accuracy Precision Recall F1-score MCC

0.977 0.759 0.741 0.750 0.738

Our experimental results and analytical findings suggest that CNN-based
image classification models, when tuned optimally, can be useful for the chal-
lenging task of recognizing landslides from images. More importantly, instead
of depending on citizen science projects (i.e., active crowdsourcing), we can
scale up the solution much more efficiently by relying on passive crowdsourc-
ing and leveraging the information shared in online social media platforms.
This ability paves the way for an AI-based automated system that can moni-
tor landslide events around the world, and eventually, reduce human effort and
operational cost. Hence, we believe the contributions of the current study will
advance the state of art in global landslide data and research. However, we also
acknowledge that there are some limitations of the current study. Below we
elaborate on the implications of our experimental findings, existing limitations,
and our future work in more detail.

On the technical side, it is important to note that our comprehensive exper-
imentation focused exclusively on a selection of CNN architectures. However,
transformer-based models, e.g. Vision Transformer (ViT) [48], have recently
become more popular and shown to outperform their CNN counterparts in
various computer vision tasks. Therefore, it is expected that transformer-based
image classification models can lead to better landslide detection performances.
Besides, we did not explore thoroughly the effect of stronger data augmenta-
tion (e.g., RandAugment [49] and CutMix [50]) and regularization (e.g., label
smoothing [41] and dropout [51]) in our current setup to keep the computa-
tional workload at a manageable level. Hence, it might be possible to improve
the model performance further via stronger data augmentation and regular-
ization techniques, as well. We suggest running an extended experimentation
to evaluate state-of-the-art vision transformer models as future work. Another
potential extension of our work can be around multimodal modeling of social
media text and images together for landslide detection as suggested in [52].

On the application side, despite the fact that social media platforms pro-
vide quick access to situational information during time-critical events, we note
that a large portion of this data contains irrelevant and redundant informa-
tion. Therefore, tasking a single model (i.e., landslide model) to sift through
all the noise in the social media data alone might not be a plausible system
realization. Instead, it is advisable to support the landslide model with other
image classification models for filtering out duplicate and irrelevant content,
as implemented in [16]. Similarly, current study does not evaluate the authen-
ticity and veracity of the landslide images collected from social media. We
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believe this requires further investigation through other automatic or manual
processes. It is important to reiterate that this work is not intended to be used
in isolation during a disaster scenario. As well as the inherent noise within the
data content itself, there are inaccuracies that could, in the worst case, hinder
rescue operations if not combined with other data sources.

8 Conclusion

In this study, we developed a model that can automatically detect landslides
in social media image streams. For this purpose, we first created a large image
collection from multiple sources with different characteristics to ensure data
diversity. Then, the collected images were assessed by three experts to attain
high quality labels through an iterative process of data re-labeling and model
retraining as per data-centric AI principles. The collected dataset is currently
the largest dataset for landslide recognition from ground-level images. At the
heart of this study lied an extensive search for the optimal landslide model con-
figuration with various CNN architectures, network optimizers, learning rates,
weight decays, and class balancing strategies. We provided several insights
about the impact of each optimization dimension on the overall performance.
These insights validated common practices and expectations shared by the
community through controlled experiments in one place. The best-performing
model achieved plausible performance not only under an experimental setup
but also in the wild during a real-world deployment. This underlines the fea-
sibility of our ultimate goal—building a system that leverages social media
data as a form of passive (i.e., opportunistic) crowdsourcing to detect land-
slide reports in real time and at scale. We believe such a system can contribute
to harvesting of global landslide data and facilitate further landslide research.
More importantly, it can support global landslide susceptibility maps to pro-
vide situational awareness and improve emergency response and decision
making.
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