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Processing Social Media Images by Combining Human and Machine Computing
during Crises
Firoj Alam , Ferda Ofli , and Muhammad Imran

Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar

ABSTRACT
The extensive use of social media platforms, especially during disasters, creates unique opportunities for
humanitarian organizations to gain situational awareness as disaster unfolds. In addition to textual
content, people post overwhelming amounts of imagery content on social networks within minutes of a
disaster hit. Studies point to the importance of this online imagery content for emergency response.
Despite recent advances in computer vision research, making sense of the imagery content in real-time
during disasters remains a challenging task. One of the important challenges is that a large proportion of
images shared on social media is redundant or irrelevant, which requires robust filtering mechanisms.
Another important challenge is that images acquired after major disasters do not share the same
characteristics as those in large-scale image collections with clean annotations of well-defined object
categories such as house, car, airplane, cat, dog, etc., used traditionally in computer vision research. To
tackle these challenges, we present a social media image processing pipeline that combines human and
machine intelligence to perform two important tasks: (i) capturing and filtering of social media imagery
content (i.e., real-time image streaming, de-duplication, and relevancy filtering); and (ii) actionable
information extraction (i.e., damage severity assessment) as a core situational awareness task during
an on-going crisis event. Results obtained from extensive experiments on real-world crisis datasets
demonstrate the significance of the proposed pipeline for optimal utilization of both human and
machine computing resources.

1. Introduction

The use of social media platforms such as Twitter and
Facebook at times of natural or man-made disasters has
increased recently (Hughes & Palen, 2009; Starbird, Palen,
Hughes, & Vieweg, 2010). People post a variety of content
such as textual messages, images, and videos (Chen, Lu, Kan,
& Cui, 2013; Imran, Castillo, Diaz, & Vieweg, 2015). Studies
show the significance and usefulness of this online informa-
tion for humanitarian organizations, struggling with disaster
response and management (Daly & Thom, 2016; Imran,
Elbassuoni, Castillo, Diaz, & Meier, 2013; Peters & Joao,
2015). A majority of these studies have however been relying
almost exclusively on textual content (i.e., posts, messages,
tweets, etc.) for crisis response and management tasks.
Contrary (or complementary) to the existing literature on
using social media textual content for crisis management,
this work focuses on leveraging the social media visual con-
tent (i.e., images) to show humanitarian organizations its
utility for disaster response. If processed timely and effec-
tively, information extracted from social media images can
enable early decision-making and other humanitarian relief
efforts such as gaining situational awareness, for example,
through summarization (Rudra et al., 2016) or classification
(Nguyen, Alam, Ofli, & Imran, 2017), and assessing the

severity of damage during an on-going disaster event
(Nguyen, Ofli, Imran, & Mitra, 2017).

Analyzing the large volume of imagery content generated
after a major disaster remains to be a challenging task in
contrast to the ease of acquiring them from various social
media platforms. Typically, humanitarian organizations make
a call for human annotators to label features of interest (e.g.,
damaged shelters and blocked roads) in images. For instance,
the United Nations Office for the Coordination of
Humanitarian Affairs (UN OCHA) employs volunteers work-
force from Digital Humanitarian Network1 for social media
filtering. A popular solution is to use a hybrid crowdsourcing
and machine learning approach to rapidly process large
volumes of imagery data for disaster response in a time-
sensitive manner. In this case, human workers (i.e., paid or
volunteers (Reuter, Ludwig, Kaufhold, & Pipek, 2015)) are
employed to annotate a set of images. These human-anno-
tated images are then used to train supervised machine learn-
ing models to classify new unseen images automatically (Ofli
et al., 2016).

1.1. Filtering social media image stream

Social media imagery data stream contains a serious amount
of irrelevant or redundant content, which makes the human
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annotations and automatic processing a challenging problem.
For instance, people often just re-tweet an existing tweet.
While this “re-tweet” behavior carries important information
about social consensus, it does not provide any additional
information from a pure image understanding perspective.
Some social media users, on the other hand, post irrelevant
images, advertisement, or even porn using event-specific
hashtags just to promote their own content. However, the
time and motivation of human annotators are neither infinite
nor free. Every crowdsourcing deployment imposes a cost in
humanitarian organizations’ volunteer base and budget.
Annotators may burn down (i.e., reducing their effectiveness
due to lack of motivation, tiredness, or stress) or drop out
completely. This would effect the humanitarian organizations’
volunteer base. Since human annotations have a direct effect
on the performance of the machine learning algorithms, defi-
ciencies in the annotations can easily translate to shortcom-
ings in the developed automatic classification systems.
Therefore, it is of utmost importance to have many volunteers
to provide annotations (i.e., quantity) and mechanisms to
keep the annotation quality high.

One way to achieve this is to decrease the workload on
the human annotators by filtering out noisy content. For
this purpose, we develop an image processing pipeline
based on deep learning and perceptual hashing that can
automatically (i) detect and filter out images that are not
relevant or do not convey significant information for crisis
response and management, and (ii) eliminate duplicate or
near-duplicate images that do not provide additional infor-
mation neither to classification algorithms nor to humani-
tarian organizations. These filtering modules will thus help
annotators to focus their time and effort on making sense
of useful image content only (Nguyen et al., 2017). In
addition, they will also help in reducing the load on

computational resources and improving further the perfor-
mance in machine classification.

Relevancy filtering
The concept of relevancy depends strongly on the context and
requirements of the task at hand. Therefore, modeling rele-
vancy is a challenging problem, as the context of relevancy
varies across disaster events, humanitarian organizations, and
even within a long-running event (e.g., wars, conflicts, etc.).
For example, one humanitarian organization could be inter-
ested in images of damaged buildings while another organiza-
tion could be interested in images of injured people and so on.
On the contrary, what is deemed irrelevant seems consistent
across disasters and to many humanitarian organizations.
That is, images showing cartoons, celebrities, advertisements,
banners, etc., are all examples of irrelevant content (see
Figure 1), hence not useful for disaster response and manage-
ment. Therefore, in this study, we propose a relevancy filter-
ing approach that focuses primarily on discarding such
irrelevant images from our data processing pipeline.

De-duplication filtering
A large proportion of the social media imagery data posted
during disaster events contains duplicate or near-duplicate
images. For example, there are cases when people simply re-
tweet an existing tweet containing an image, or they post images
with little modification, for example, cropping/resizing, back-
ground padding, changing intensity, embedding text, etc. (see
Figure 2). Such posting behavior produces a high number of
near-duplicate images that do not yield any significant additional
information into an online data collection. Therefore, in this
study, we develop a de-duplication filtering method to eradicate
such redundant images from our data processing pipeline.

Figure 1. Examples of irrelevant images in our datasets showing cartoons, banners, advertisements, celebrities, etc.

Figure 2. Examples of near-duplicate images found in our datasets.
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1.2. Actionable information extraction: damage
assessment

Once the social media imagery data are cleaned from the
irrelevant and redundant content, and high-quality annota-
tions are obtained from human annotators, we can then train
machine learning models to further analyze the resulting set
of clean images to extract actionable information for various
situational-awareness tasks such as infrastructural damage
assessment, injured people detection, monitoring rescue
operations, etc. Among several such potential use cases of
the proposed image processing pipeline on social networks,
in this study, we focus on the use case of automatic damage
severity assessment from images during disasters.

At the onset of a crisis, assessment of the level of damage is
one of the key situational awareness requirements of huma-
nitarian response organizations to understand the severity of
destruction and to plan relief efforts accordingly. It is impor-
tant for first-responders to know what type of damage hap-
pened and where. Existing research on the use of Twitter
during an emergency for damage assessment is mainly
focused on the textual content of tweets (Cresci, Tesconi,
Cimino, & Dellórletta, 2015). Despite the recent advances in
computer vision domain, especially in image classification,
most of the existing works for emergency management do
not yet rely on the image data. We have only recently
employed state-of-the-art computer vision techniques to per-
form an extensive experimentation of damage assessment
using images from four major natural disasters (Nguyen
et al., 2017).

Specifically, our goal is to determine whether an assess-
ment of severity of damage through images is possible or not.
For the damage assessment, we consider three levels: severe
damage, mild damage, and little-to-no damage (further details
regarding each damage level are given in the Data Collection
and Annotation section). Given the fact that, during disasters,
tens of thousands of images are posted on social media plat-
forms such as Twitter, a simple automatic damage assessment
system to learn whether an image contains damage or not will
not be considered that helpful for emergency responders.
Rather, we need a system that not only detects damage-related
images but also determines the level of damage (i.e., severe,
mild, or little-to-none). This will greatly help emergency
responders prioritize their relief efforts and planning for the
most severe cases first. To the best of our knowledge, no prior
work has dealt with the task of identifying level of damage
(i.e., severe, mild, or little-to-none) from social media images
as our work does.

1.3. Our contributions

State-of-the-art studies on duplicate image detection rely on
Bag-of-Words (Wu, Ke, Isard, & Sun, 2009), entropy-based
approaches (Dong, Wang, Charikar, & Li, 2012), perceptual
hashing (Zauner, 2010), and deep features (An, Huang, Chen,
& Weng, 2017). After feature extraction, most of these studies
use hamming distance to compute the similarity between a
pair of images. This requires defining a threshold to detect
duplicate to near duplicate images. However, there has been

less effort in literature on how to define this threshold. In this
study, we have focused on finding a good approach to define
this threshold while we also explored perceptual hashing and
deep features.

On the other hand, most of the work on finding relevant
images are from information retrieval domain, for example,
finding images based on query (Babenko, Slesarev, Chigorin,
& Lempitsky, 2014; Jégou, Douze, Schmid, & Pérez, 2010; Rui,
Huang, & Mehrotra, 1997; Siddiquie, Feris, & Davis, 2011),
except for one particular study that focused on finding
visually relevant and irrelevant tweets with images (Chen
et al., 2013). Unlike existing work, our understanding of
relevancy is defined by the conceptualization of “what is
actually irrelevant to the crisis event based on the semantics
of the situation at hand (e.g., damage severity assessment).”

Though only a few, there are studies on designing classi-
fiers for damage assessment purposes using social media data.
These studies rely mainly on the use of traditional Bag-of-
Words features together with classical machine learning clas-
sifiers such as Support Vector Machines (SVMs) (Daly &
Thom, 2016; Lagerstrom et al., 2016), and hence, achieve
limited performance. Whereas recent advances in convolu-
tional neural networks enable further performance improve-
ments. Therefore, we conduct an extensive experimentation of
domain adaptation and transfer learning approaches based on
convolutional neural networks for damage assessment and
disaster response. Another limitation is that currently there
is no publicly available dataset for damage assessment. We
hope to shed light on this limitation by making our data
publicly available.

Consequently, we can summarize main contributions of
our work as follows. (i) We propose mechanisms to purify
the noisy social media imagery data by removing duplicate,
near-duplicate, and irrelevant image content. (ii) We show
that the state-of-the-art computer vision deep learning models
can be adapted successfully to image relevancy and damage
category classification problems on real-world crisis datasets.
(iii) We use the proposed mechanisms to demonstrate that a
big chunk of the real-world crisis datasets obtained from
online social networks consists of redundant or irrelevant
content. (iv) Our extensive experimental evaluations under-
line the importance of the proposed image filtering mechan-
isms for optimal utilization of both human and machine
resources. Specifically, our experimental results show that
purification of social media image content enables efficient
use of the limited human annotation budget during a crisis
event, and improves both robustness and quality of the
machine learning models’ outputs used by the humanitarian
organizations. (v) Finally, we present a complete system with
a real-time image processing pipeline in place for analyzing
social media data at the onset of any emergency event. We
also evaluated the system’s performance in terms of through-
put and latency to demonstrate the scalability of the proposed
social media image processing pipeline.

The rest of the article is organized as follows. We present a
review of literature in the Related Work section. We provide
details about our real-world crisis datasets and their labeling
process in the Data Collection and Annotation section. We
then introduce our automatic image processing pipeline in the
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Real-time Social Media Image Processing Pipeline section,
and elaborate our experiments and results in the
Experimental Framework section. We evaluate the perfor-
mance of the proposed system in terms of throughput and
latency in the System Performance Experiments section. We
discuss our findings and observations in the Discussion sec-
tion. Finally, we summarize our work in the Conclusion
section.

2. Related work

Despite the wealth of text-based analyses of social media data
for crisis response and management, there are only a few
studies analyzing the social media image content shared dur-
ing crisis events. Among others, one notable work proposes a
system called Artificial Intelligence for Digital Response
(AIDR) (Imran, Castillo, Lucas, Meier, & Vieweg, 2014;
Imran et al., 2013), which mainly focuses on collecting and
analyzing tweets in order to facilitate humanitarian organiza-
tions’ needs. The AIDR system employs human volunteers to
train machines for the real-time processing of tweets. For a
complete survey, mainly on the text processing systems, we
refer the reader to Imran et al. (2015). Since this work focuses
on image filtering and classification, next we discuss the state-
of-the-art approaches in duplicate image detection, image
classification in general, and damage assessment from images
in particular.

2.1. Importance of social media image analysis

The importance of social media images for disaster manage-
ment has been recently highlighted in Peters and Joao (2015).
The authors analyzed tweets and messages from Flickr and
Instagram for the flood event in Saxony in 2013, and found
that the existence of images within on-topic messages were
more relevant to the disaster event, and the image content
also provided important information related to the event. In
another study, Daly and Thom, 2016 mining focused on
classifying images extracted from social media, i.e., Flicker,
and analyzed whether a fire event occurred at a particular
time and place (Daly & Thom, 2016). Their study also ana-
lyzed spatio-temporal meta-data associated with the images
and suggested that geo-tags proved useful to locate the fire-
affected areas. Taking a step further, Chen et al. studied the
association between tweets and images, and their use in clas-
sifying visually relevant and irrelevant tweets (Chen et al.,
2013). They designed classifiers by combining features from
text, images and socially relevant contextual features (e.g.,
posting time, follower ratio, the number of comments and
re-tweets), and reported an F1-score of 70.5% in a binary
classification task, which is 5.7% higher than the text-only
classification.

2.2. Duplicate image detection

There are many approaches for duplicate and near-duplicate
image detection, including cryptographic hashing like MD5

(Rivest, 1992), locality-sensitive hashing (Chum, Philbin, &
Zisserman, 2008; Ke, Sukthankar, & Huston, 2004; Lee, Ke, &
Isard, 2010), indexing based on uniform randomized trees
(Lei, Qiu, Zheng, & Huang, 2014), perceptual hashing (Lei,
Wang, & Huang, 2011; Zauner, 2010), and, more recently,
deep learning-based approaches (An et al., 2017; Zheng, Song,
Leung, & Goodfellow, 2016).

Perceptual hashing-based approach, in particular, repre-
sents the fingerprint of an image derived from various fea-
tures from its content. An image can have different digital
representation, for example, due to cropping, resizing, com-
pression or histogram equalization. Traditional cryptographic
hashing techniques are not suitable for capturing such
changes in the binary representation, which is a common
case in near-duplicate images. Whereas perceptual hash func-
tions maintain perceptual equality of images, and hence, they
are robust in detecting even slight changes in the binary
representation of two similar images. The success of percep-
tual hashing for image similarity measure has also been
reported in (Gong et al., 2015), where they show that percep-
tual hashing scales well for clustering a very large number of
images.

In deep learning-based approach, duplicate image detec-
tion is facilitated via extracting deep features (i.e., features
obtained from a deep neural network architecture), and
then, computing the distance between the resulting deep
image features. For example, Zheng et al. showed the success
of deep features extracted using adversarial neural networks in
detecting near-duplicate images (Zheng et al., 2016). Recently,
An et al. presented a deep learning-based approach for feature
extraction followed by subspace-based learning for hashing
(An et al., 2017).

2.3. Image classification in general

State-of-the-art studies in image classification range from
categorizing images and detecting objects (He, Zhang, Ren,
& Sun, 2016) to generating captions (Xu et al., 2015). Most of
these studies employ different convolutional neural network
(CNN) architectures on large labeled image collections such
as PASCAL VOC (Everingham, Van Gool, Williams, Winn, &
Zisserman, 2010) or ImageNet (Russakovsky et al., 2015).
Among different CNN architectures, the most popular are
VGG (Simonyan & Zisserman, 2014), AlexNet (Krizhevsky,
Sutskever, & Hinton, 2012), and GoogLeNet (Szegedy et al.,
2015). The VGG is designed using an architecture with very
small (3 × 3) convolution filters and with a depth of 16 and 19
layers. The 16-layer network is referred to as VGG-16 net-
work. The AlexNet was designed using 5 convolutional and 3
fully connected layers. The architecture of GoogLeNet con-
sists of 22 convolutional and pooling layers stacked on top of
each other. Recently, in the 2016 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC),2 the best performance on
image classification task was reported as 2.99% top-5 classifi-
cation error by an ensemble method based on existing CNN
architectures such as Inception Networks (Szegedy,
Vanhoucke, Ioffe, Shlens, & Wojna, 2015), Residual

2http://image-net.org/challenges/LSVRC/2016/results#loc.
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Networks (He et al., 2016), and Wide Residual Networks
(Zagoruyko & Komodakis, 2016).

Designing a new network architecture and training it from
scratch is a computationally expensive task that also requires
millions of images to achieve a competitive result. Hence, the
typical approach is to adapt a pre-trained network onto a
target task, which is originally trained on a very large dataset,
for example, ImageNet, containing a million images with
1,000 categories. In literature, this approach is commonly
referred to as transfer learning. For the image classification
task, the idea of transfer learning may correspond to either
one of the following cases: i) use the pre-trained model as a
feature extractor, or ii) use the network with pre-trained
weights and fine-tune the network with the data from the
new task. Many follow-up studies have shown that the fea-
tures learned automatically by these deep neural networks are
transferable to different target domains (Donahue et al., 2014;
Girshick, Donahue, Darrell, & Malik, 2014; Oquab, Bottou,
Laptev, & Sivic, 2014; Sermanet et al., 2013; Zeiler & Fergus,
2014). This proves extremely useful for training a large net-
work without overfitting when the target dataset is signifi-
cantly smaller than the base dataset, as in our case, and yet
achieving state-of-the-art performance in the target domain.

2.4. Image classification for damage assessment

Use of computer vision techniques for damage assessment
from images has not been fully explored in literature. There
are only a handful of studies in other research domains (e.g.,
remote sensing) that assess the level of damage from aerial
(Attari, Ofli, Awad, Lucas, & Chawla, 2017; Fernandez
Galarreta, Kerle, & Gerke, 2015; Turker & San, 2004) and
satellite (Feng et al., 2014; Pesaresi, Gerhardinger, & Haag,
2007) images collected from disaster-hit regions. Most recent
studies based on social media data, and also the most rele-
vant ones to our study, are presented by (Lagerstrom et al.,
2016) and (Daly & Thom, 2016) where both studies analyze
social media images in a binary classification setting for fire/
not-fire detection scenario. In our current work, we address
a more challenging problem since we neither limit the task
to a particular disaster type nor to a binary classification
setting.

For the damage assessment task, most of the aforemen-
tioned studies were based on using handcrafted features such
as Scale Invariant Feature Transform (SIFT) and Histogram of
Oriented Gradients (HOG) together with classical machine
learning classifiers such as Support Vector Machines (SVMs)
and Random Forest (RF) (Csurka, Dance, Fan, Willamowski,
& Bray, 2004; Lazebnik, Schmid, & Ponce, 2006) in a bag-of-
visual-words fashion. Features such as SIFT and HOG detect
and describe local information in images. The bag-of-visual-
words approach then converts these image features into visual
words based on vector quantization. Since there has been only
a few studies on damage assessment from images and they are
mostly limited to the use of bag-of-visual-words approach, we

explored, in our study, the transfer learning approach using
CNN for crisis response and management purposes.

3. Data collection and annotation

We used publicly available AIDR system (Imran et al., 2014)
to collect images from social media platforms such as Twitter
during four major natural disasters, namely, Typhoon Ruby,
Nepal Earthquake, Ecuador Earthquake, and Hurricane
Matthew. The data collection was based on event-specific
hashtags and keywords. For the data collection, Twitter was
chosen over the other social media platforms such as
Instagram and Flickr for different reasons. First of all,
Twitter provides more convenient and efficient mechanism
to automatically collect data through its APIs. Second, images
linked with tweets also contain textual content that can be
used in a multimodal analysis approach. Table 1 lists the total
number of images initially collected for each dataset. Figure 3
shows example images from these datasets.

3.1. Human annotations

We acquired human labels for the purpose of training and
evaluating machine learning models for image filtering and clas-
sification. Although, there were several other uses of images from
Twitter, in this work, we focused on damage severity assessment
since it is one of the most critical situational awareness tasks for
many humanitarian organizations. For this purpose, we obtained
human annotations in two different settings. The first set of
annotations were gathered from AIDR for all four disasters
using the volunteers of the Standby Task Force (SBTF)3 commu-
nity. These volunteers were engaged during an on-going crisis.
For example, while the Hurricane Matthew tweets were being
collected from Twitter, volunteers were employed to annotate
images. This process involved collecting tweets, checking if the
tweets contained an image URL, if yes then downloading actual
images from the Web, and finally assigning them to the annota-
tors. Under such real-time crowdsourcing scenarios, predeter-
mining the number of images to be annotated is not possible.
Moreover, controlling duplicate images is a challenging task.
Hence our volunteers were also exposed to such duplicate cases.

In the second setting, we used Crowdflower,4 which is a paid
crowdsourcing platform, to annotate images. A random sample
of 1,000 images were picked from the Nepal Earthquake,
Ecuador Earthquake, and Typhoon Ruby datasets. To ensure
high-quality of the annotations, in both settings, each image was
required to be annotated by at least three human annotators,
from which a final label was picked using the majority voting

Table 1. Dataset details for all four disaster events with their year and number
of images.

Disaster Year Number of Images

Typhoon Ruby 2014 7,000
Nepal Earthquake 2015 57,000
Hurricane Matthew 2016 61,000
Ecuador Earthquake 2016 65,000

3http://standbytaskforce.org/.
4http://crowdflower.com/.
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technique. Images with less than three annotations were not
considered as trustworthy, and hence, discarded.

Annotation instructions
In this task, we opted for representing the severity of damage in an
image with three levels. Having a three-level severity assessment
scheme as opposed to a finer scale rating scheme (e.g., 0–8) is
more convenient for humanitarian responders to quickly analyze,
for example, images showing only severe damage instead of look-
ing into different image buckets representing different scales such
as 6, 7, 8. Moreover, obtaining accurate and consistent ground
truth from human annotators for severity of damage proves to be
a much more challenging task when a finer scale rating scheme is
assumed.

Below we provide the crowdsourcing task description,
damage categories, and their definitions. Annotators were
asked to follow the given instructions and annotate images
according to the categorical definitions.
Task description: The purpose of this task is to assess the
severity of damage shown in an image. The severity of damage
in an image is the extent of physical destruction shown in it.
We are only interested in physical damages like broken bridges,
collapsed or shattered buildings, destroyed or cracked roads, etc.
An example of a non-physical damage is the signs of smoke due

to fire on a building or bridge—in this particular task, we do
not consider such damage types.

1. Severe Damage: Images that show the substantial
destruction of an infrastructure belongs to the severe damage
category. A non-livable or non-usable building, a non-crossable
bridge, or a non-drivable road are all examples of severely
damaged infrastructures.

2. Mild Damage: Damage is generally exceeding minor
[damage] with up to 50% of a building, for example, in the
focus of the image sustaining a partial loss of amenity/roof.
Maybe only part of the building has to be closed down, but
other parts can still be used. In the case of a bridge, if the bridge
can still be used, however, part of it is unusable and/or needs
some amount of repairs. Moreover, in the case of a road image,
if the road is still usable, however, part of it has to be blocked
off because of damage. This damage should be substantially
more than what we see due to regular wear or tear.

3. Little-to-no Damage: Images that show damage-free
infrastructure (except for wear and tear due to age or disrepair)
belong to this category.

Data annotation outcome
Table 2 shows the combined human annotation results
from both annotation settings. Images that received at

Figure 3. Sample images with different damage levels from different disaster datasets.
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least three or more annotations from different annotators
were considered as trustworthy and hence used in our
experiments, otherwise discarded and not shown in
Table 2. For example, for the Hurricane Matthew dataset
only 336 images were labeled by three or more human
annotators. Moreover, since the annotation process was
performed on the raw image collections, that is, without
applying any pre-filtering to clean the datasets, the result-
ing labeled datasets contain duplicate and irrelevant
images. Overall, we gathered a significantly high number
of labeled images for events such as Nepal Earthquake
(~25,500) and Typhoon Ruby (~7,000) as compared to
Ecuador Earthquake (~2,000) and Hurricane Matthew
(~350 only).

4. Real-time social media image processing pipeline

To be effective during disasters, humanitarian organiza-
tions require real-time insights from the data posted on
social networks at the onset of an emergency event. To
fulfill such time-critical information needs, the data
should be processed as soon as it arrives. That means
the system should ingest data from online platforms as it
is being posted, perform processing and analysis to gain
insights in near real-time. To achieve these capabilities, we
have recently presented an automatic image processing
pipeline (Alam, Imran, & Ofli, 2017). Figure 4 shows the
pipeline and its various critical components and modules,
which we describe next.

4.1. Tweet collector

The Tweet Collector module is responsible for collecting live
tweets from the Twitter streaming API.5 The system can be
set up to collect tweets from multiple disasters happening at
the same time. To create a collection in the system for a
specific event (e.g., an earthquake), the user specifies either
keywords, hashtags, geographical bounding boxes, and/or
Twitter users. In the case of geographical bounding box
option, only geo-tagged tweets are collected, however, one
can use both the keywords and bounding box options to get
tweets matching either one of the keywords or tweets within
the defined geographical areas. Although the pipeline can be
extended to consume images from other social media plat-
forms such as Facebook, Instagram, etc., in this article, we
focus only on collecting images that are shared via the
Twitter platform.

4.2. Image collector

Tweets collected by the Tweet Collector are ingested by the
Image Collector module to extract image URLs from the
collected tweets. Next, given the extracted URLs, the
Image Collector downloads images from the Web (i.e., in
many cases from Flickr or Instagram). Due to re-tweets, a
large proportion of collected tweets consist of duplicate
URLs. To avoid downloading duplicate images, the system
maintains an in-memory list (i.e., linked hash map) of
unique URLs (i.e., Image URLs database in Figure 4).
Each collection in the system maintains its own database.
A newly arrived image URL is first checked against the in-
memory database to find duplicates. If the URL is unique,
it is added to the Image URLs list and also pushed into
another queue that keeps all the pending URLs waiting for
their corresponding images to be downloaded from the
Web. If the URL is found as duplicate, it is simply dis-
carded. This in-memory list has a constant time complex-
ity, O(1), for adding and searching an element, and its
space complexity is O(n).

Table 2. Number of labeled images for each dataset in each damage category.

Category
Nepal

Earthquake
Ecuador

Earthquake
Typhoon
Ruby

Hurricane
Matthew Total

Severe 8,927 955 88 110 10,080
Mild 2,257 89 338 94 2,778
None 14,239 946 6,387 132 21,704
Total 25,423 1,990 6,813 336 34,562

Figure 4. Automatic image processing pipeline.

5https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data.
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Once image URLs are in the queue, the system starts
downloading images that are then published to a collection-
specific Redis channel.6 All subscribers of that channel imme-
diately receive images as they are downloaded.

4.3. Image filtering

This module aims at reducing the noisy content in the incom-
ing imagery data stream. As described earlier, two types of
images are considered as noise in this work: (i) images that
are duplicate or near-duplicate, and (ii) images that are irre-
levant for disaster response. By removing the noisy content in
the imagery data stream, the Image Filtering module achieves
two important goals: First, to filter-out irrelevant images
posted during disasters to provide only relevant and informa-
tive content to disaster managers. Second, to boost the per-
formance of human workers, as shown in the pipeline (i.e., the
Crowd Task Manager module), by removing irrelevant and
near-duplicate images. If human workers, who are supposed
to label images for various machine learning tasks, are kept
busy to label too many irrelevant or duplicate images, their
time will be wasted and so the budget. Hence, the Image
Filtering module shown in Figure 4 comprises two submo-
dules, i.e., relevancy filtering and de-duplication filtering,
which are described next. The image filtering module passes
the image byte stream to these submodules and combines
their outputs in a JSON7 stream to pass it to the Crowd
Task Manager module.

Relevancy filtering
The Relevancy Filtering submodule receives an image byte
stream as input and passes it through the relevancy classifier,
which outputs a class label and a confidence score. Here, one
of the state-of-the-art CNN architectures (i.e., VGG-16) is
employed to determine whether the given image is relevant
or not. Further details regarding the design of the relevancy
classifier and its performance are presented later in the
Relevancy Filtering Experiments subsection. The Relevancy
Filtering submodule then returns the classification outputs to
the Image Filtering module.

De-duplication filtering
Similar to the Relevancy Filtering submodule, the De-duplica-
tion Filtering submodule receives an image byte stream as
input, and implements the perceptual hashing technique8 to
determine whether a given image is an exact- or near-dupli-
cate of previously seen images. Put specifically, for each
received image, a hash value is computed and compared
against the in-memory image hashes to detect duplicate or
near-duplicate cases based on their Hamming distances
(Hamming, 1950). The motivation of using this approach is
that it is computationally simpler and performs reasonably
well compared to the deep learning-based approach. However,
we have also conducted experiments using deep features. We

present our experimental findings in the De-duplication
Filtering Experiments subsection. The De-duplication
Filtering submodule then returns its duplicate-or-not decision
to the Image Filtering module.

4.4. Crowd task manager

The Crowd Task Manager module is responsible for assigning
image tagging tasks to the Standby Task Force (SBTF) volun-
teers. An end-user creates a task, which we also call classifier
(more details regarding the classifiers follow in the next sec-
tion), that consists of a set of classes (e.g., severe damage, mild
damage, and little-to-no damage). The Crowd Task Manager
shows an image and the list of classes to a human labeler. The
labeler selects an appropriate label for the image, which is
then considered as a training example.

4.5. Image classifiers

After removing duplicate and irrelevant images, the system
allows end users (e.g., crisis managers) to define image classi-
fiers specific to their information needs. For instance, to
gather images that show some kind of damage, a damage
assessment classifier can be created. Similarly, an injured
people detection classifier can be created to gather all the
images that show people with some injuries. More than one
classifier can also be created to classify images in parallel (e.g.,
both damage assessment and injured people detection classi-
fiers). A classifier can consist of two (binary) or more classes
(multi-class). More details on training image classifiers for
different use cases are presented later in the Experimental
Framework section. As shown in Figure 4, the Image
Classifiers module receives two types of images from the
Crowd Task Manager for two purposes. One set is human-
labeled images, which are used to train the user-defined image
classifiers. The other is un-labeled images, which are automa-
tically labeled using the designed classifiers by the machine.
The Image Classifiers module then combines the classified
information (i.e., class labels and confidence scores), and
passes them to the Persister module to persist.

4.6. Persister

The Persister module is responsible for all database-specific
operations such as insertion of images’ meta-data, storage,
and retrieval of classifiers’ predictions. Moreover, it also
persists machine-tagged images into the file system. We
use PostgreSQL9 database to persist tweets and their
meta-data.

All the modules described above communicate with each
other (i.e., data flow) using Redis channels. Moreover, each
module has a set of RESTFul APIs to enable external interac-
tions (e.g., UI interactions) and to set parameter values, if
required. Red arrows in Figure 4 represent live streams

6https://redis.io/.
7https://www.json.org/.
8http://www.phash.org/.
9https://www.postgresql.org/.

318 F. ALAM ET AL.

https://redis.io/
https://www.json.org/
http://www.phash.org/
https://www.postgresql.org/


carrying data items, whereas black arrows show non-stream-
ing communications. The system is implemented using the
Java Enterprise Edition (J2EE)10 programming language.

5. Experimental framework

In this section, we discuss the design and development of the
relevancy classifier, de-duplication filter, and damage assess-
ment classifier. We then present four different experimental
settings to evaluate the performance of our image filtering and
damage assessment modules. We use several well-known
metrics such as accuracy, precision, recall, F1-score, and
AUC to evaluate the performance of different components
of the system. Accuracy is computed as the proportion of
correct predictions, both positive and negative. Precision is
the fraction of the number of true positive predictions to the
number of all positive predictions. Recall is the fraction of the
number of true positive predictions to the actual number of
positive instances. F1-score is the harmonic mean of precision
and recall. AUC is computed as the area under the precision-
recall curve.

5.1. Relevancy filtering experiments

The Relevancy Filtering module employs a convolutional
neural network to determine whether an image is relevant
or not. Specifically, we use VGG-1611 (Simonyan &
Zisserman, 2014) architecture to train a relevancy model
using the DeepLearning4J library.12 It is important to note
that the human annotation process presented in the Data
Collection and Annotation section was designed mainly for
assessing the level of damage observed in an image, but no
question was asked regarding the relevancy of the actual
image content. Hence, we lack ground truth human annota-
tions for assessing the relevancy of an image content. One
solution would be to construct a set of rules or hand-design a
set of features to decide whether an image is relevant or not.
However, we avoided such an approach in order not to create
any biased or restricted definition of relevancy that may lead
to discarding potentially relevant and useful data. Instead, we
decided to rely on the human-labeled data to learn a set of
image features that represent the subset of irrelevant images
in our datasets, following a number of steps explained in the
sequel.

Ground-truth collection procedure
First, we evaluated all images that have been annotated ori-
ginally for damage assessment task (see the Data Collection
and Annotation section). Second, we considered all images in
the severe and mild categories as relevant. Third, we observed
that the none category contained two types of images: (i) the
ones that were still related to the disaster event but did not
simply show any damage, and (ii) the ones that were not
related to the disaster event at all, or the relation could not

be immediately understood just from the image content.
Fourth, we noted that this latter set of images in the none
category should be considered as irrelevant. Hence, to identify
the set of images in the none category that could be deemed as
irrelevant, we used the original VGG-16 model (Simonyan &
Zisserman, 2014) to classify each image into one of the
ImageNet object categories. The aim here was to specify
which ImageNet object classes appeared the most for the
irrelevant portion of the none category images. For this pur-
pose, we looked at the distribution of the most-frequently-
occurring ImageNet object classes for the none category
images. We then evaluated the most prevalent 50 object
classes (which already accounted for half of the none category
images) and kept only those that appeared relatively rarely
(e.g., at least 10 times less) across the set of relevant images.
As a result of this analysis, we were able to select 14 ImageNet
object classes (including website, suit, lab coat, envelope, dust
jacket, candle, menu, vestment, monitor, street sign, puzzle,
television, cash machine, and screen) that we used to identify
irrelevant images in our none category. Consequently, this
approach yielded a set of 3,518 irrelevant images. We also
randomly sampled an equal number of images from our
relevant image set (i.e., images that are originally labeled as
severe or mild) to create a balanced dataset of 7,036 images,
which we then used to train a binary relevancy classifier.

Relevancy classifier training and fine-tuning
As discussed earlier, the transfer learning approach is effective
for visual recognition tasks (Ozbulak, Aytar, & Ekenel, 2016;
Yosinski, Clune, Bengio, & Lipson, 2014) when the dataset in
the new domain is a small. Therefore, we adopted a transfer
learning approach using the existing weights of the pre-
trained VGG-16 network as an initialization for fine-tuning
the same network on our own training dataset. We also
adapted the last layer of the network to handle binary classi-
fication task (i.e., two categories in the softmax layer) instead
of the original 1,000-class classification. Hence, this transfer
learning approach allowed us to transfer the features and the
parameters of the network from the broad domain (i.e., large-
scale image classification) to the specific one (i.e., relevant-
image classification). We used 60% of our 7,036 images for
training and 20% for validation during fine-tuning of the
VGG-16 network. We then tested the performance of the
fine-tuned network on the remaining 20% of the dataset.

Results
Table 3 presents the performance of the resulting relevancy
filter on the test set. Almost perfect performance of the binary
classifier stems from the fact that relevant and irrelevant

Table 3. Performance of the relevancy filter on the test set.

AUC Precision Recall F1-Score

0.98 0.99 0.97 0.98

10http://www.oracle.com/technetwork/java/javaee/overview/index.html.
11VGG-16 is one of the state-of-the-art deep learning object classification models that performed the best in identifying 1,000 object categories in ILSVRC
2014 (http://image-net.org/challenges/LSVRC/2014/results#clsloc).

12https://deeplearning4j.org/.
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images in our training dataset have completely different image
characteristics and content (as can be seen from the example
images in Figures 1, 2 and 3). This meets our original rele-
vancy filtering objective to remove only those images that are
surely irrelevant to the task at hand. Note that we reserve
these 7,036 images only for relevancy filter modeling, and
perform the rest of the experiments presented later using the
remaining 27,526 images.

5.2. De-duplication filtering experiments

To detect exact- as well as near-duplicate images, the
approach we followed is as follows. For a given pair of images
(a,b), a and b are considered near- or exact-duplicate when
distanceða; bÞ< threshold. Depending on the problem differ-
ent distance functions can be applied, and the threshold can
be learned empirically. In this study, we investigated two
different approaches to detect duplicate images: (i) perceptual
hashing-based approach, and (ii) deep learning-based
approach.

For the first experiment, we analyzed perceptual hashing-
based approach. Perceptual hashing technique extracts certain
features from each image, and computes a hash value (i.e., a
binary string of length 49) for each image based on these
features, and compares the resulting pair of hashes to decide
the level of similarity between the images. During an event,
the system maintains a list (i.e., in-memory data structure) of
hashes computed for a set of distinct images it receives from
the Image Collector module (see the Image Collector subsec-
tion). To determine whether a newly arrived image is dupli-
cate of a previously seen image, hash value of the new image is
computed and compared against the list of stored hashes to
calculate its distance from the existing image hashes. In our
case, we use the Hamming distance to compare two hashes. If
the distance between the hash of a newly arrived image and a
hash in the list is smaller than d (threshold) then we consider
the newly arrived image as a duplicate image. We always keep
the recent 100K hashes in the physical memory. This number
obviously depends on the size of available memory in the
system.

To detect duplicate images, one important factor is to define
an optimal distance threshold d. For this purpose, we manually

investigated all image pairs with a Hamming distance between 0
to 20. Pairs with distance d > 20 looked trivially distinct, and
thus, were not selected for manual annotation. We then visually
examined each remaining image pair and assigned a value of 1,
if the images in that pair should be considered duplicate, and 0
otherwise. As a result of this process, we collected 550 image
pairs (i.e., 1,100 images in total) with ground truth duplicate-or-
not annotations.

For the deep learning-based experiment, we extracted deep
features from fc7 layer of the VGG-16 network trained on
ImageNet (i.e., last 4,096-dimensional layer before the soft-
max layer) for all 550 image pairs, and computed the
Euclidean distance between each image pair.

Results
Figure 5 depicts Receiver Operating Characteristic (ROC) and
precision-recall curves for the de-duplication experiments.
We determine the appropriate threshold value for our de-
duplication filter as d ¼ 14 by analyzing the optimal opera-
tion point of the ROC curve plotted in Figure 5a (marked
with a red dot). This approach provides us the best trade-off
between the cost of failing to detect true positives against the
cost of raising false alarms. As can be seen from Figure 5b,
this threshold value achieves a score of almost 0.9 for both
precision and recall. If, however, one wants to have almost
perfect recall (i.e., guarantee almost not to miss any poten-
tially unique image) at the expense of raising false alarms,
then setting the threshold value as d ¼ 10 (marked with a
green dot in Figure 5) achieves a recall score of almost 1.0 and
a precision score of 0.65. Figure 5 also indicates that the
system achieved AUC ¼ 0:96 for ROC and AUC ¼ 0:93 for
precision-recall curve.

In Figure 6, we present ROC and precision-recall curves
for the experiment where we replaced perceptual hash fea-
tures with deep features for de-duplication filtering.
According to these plots, d ¼ 0:208 is the appropriate thresh-
old value (i.e., optimal operation point on ROC curve) that
achieves almost perfect scores in all measures (i.e., precision,
recall, and AUC) on our test set.

To illustrate the benefits of the image filtering components as
well as to understand what proportion of the data on online
social networks is potentially relevant, we apply our proposed

Figure 5. Estimation of distance threshold d for duplicate image detection using perceptual hashing-based approach.
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relevancy and de-duplication filtering modules on 27; 526
images in our dataset. Table 4 shows the number of images
retained in the dataset after each image filtering operation. As
expected, relevancy filtering eliminates 8,886 of 18,186 images
in none category, corresponding to an almost 50% reduction.
There are some images removed from the severe and mild
categories (i.e., 212 and 164, respectively) but these numbers
are in the acceptable range of 2% error margin for the trained
relevancy classifier as reported earlier. De-duplication filter, on
the other hand, removes a considerable proportion of images
from all categories, i.e., 58%, 50% and 30% from severe, mild
and none categories, respectively. The relatively higher removal
rate for the severe and mild categories can be explained by the
fact that social media users tend to re-post the most relevant
content more often. Consequently, our image filtering pipeline
reduces the size of the raw image data collection by almost a
factor of 3 (i.e., an overall reduction of 62%) while retaining the
most relevant and informative image content for further ana-
lyses, which we present in the next section.

5.3. Damage assessment experiments with image
filtering

One of the important goals of our study was to understand
the effect of image filtering on the task-specific subsequent
classifier(s). Therefore, we have conducted experiments to
analyze the effects of irrelevant and duplicate images on
human-computation as well as machine training. For the
experiments, we defined the following four settings for
image filtering (i.e., relevancy and de-duplication filtering)
followed by the damage assessment classification.

● S1: We perform experiments on raw data collection by
keeping duplicate and irrelevant images intact. The

results obtained from this setting are considered as base-
lines for the next settings.

● S2: We refine the S1 dataset by removing only the
duplicate images. The aim of this setting is to learn the
difference with and without duplicates.

● S3: Similarly we remove only the irrelevant images from
S1 dataset and keep the rest of the data. The aim here is
to investigate the effects of removing irrelevant images
from the training set.

● S4: We remove both duplicate and irrelevant images.
This is the ideal setting, which is also implemented in
our proposed pipeline. This setting is expected to out-
perform others both in terms of budget utilization and
machine performance.

To train a damage assessment classifier, we again opted for
strategy of fine-tuning a pre-trained VGG-16 network (i.e.,
similar to designing the relevancy filtering model). However,
we followed a slightly different approach while training our
damage assessment model as follows: (i) the network is trained
for 3-class classification where classes are severe, mild, and none,
and (ii) the performance of the resulting damage assessment
classifier is evaluated in a 5-fold cross-validation manner rather
than using a train/validation/test data split.

Results
To simulate the above listed four settings, we fixed a budget of
6,000 USD. For simplicity, we assume 1 USD is the cost to get
one image labeled by human workers.

In S1, the system spends full 6,000 USD budget to get 6,000
labeled images from the raw collection, many of which are
potential duplicates. To simulate this, we randomly select
6,000 images from our labeled dataset while maintaining the
original class distributions as shown in the S1 column of
Table 5. We then use these 6,000 images to train a damage

Figure 6. Estimation of distance threshold d for duplicate image detection using deep learning-based approach.

Table 4. Number of images that remain in our dataset after each image filtering
operation.

Category
Raw

Collection
After Relevancy

Filtering
After De-duplication

Filtering
Overall

Reduction

Severe 7,501 7,289 3,084 59%
Mild 1,839 1,675 844 54%
None 18,186 9,300 6,553 64%
Total 27,526 18,264 10,481 62%

Table 5. Number of images used in each setting: S1 (with duplicates + with
irrelevant), S2 (without duplicates + with irrelevant), S3 (with duplicates +
without irrelevant), S4 (without duplicates + without irrelevant).

Category S1 S2 S3 S4

Severe 1,636 1,038 2,395 1,765
Mild 400 279 550 483
None 3,964 3,505 3,055 3,751
Total 6,000 4,822 6,000 6,000
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assessment classifier as described above, and present the per-
formance of the classifier in the S1 column of Table 6.

In S2, we take the same subset of 6,000 images used in S1,
and run them through our de-duplication filter to eliminate
potential duplicates, and then, train a damage assessment
classifier on the cleaned subset of images. S2 column of
Table 5 shows the class-wise distribution of the remaining
images after de-duplication. We see that 598, 121, and 459
images are marked as duplicate and discarded in severe, mild,
and none categories, respectively. Evidently, this indicates a
budget waste of 1,178 USD (,20%) in S1, which could have
been saved if the de-duplication technique was employed. The
performance of the damage assessment classifier trained on
the cleaned data is shown in S2 column of Table 6.

In S3, we first apply relevancy filtering operation on the
raw collection and then sample 6,000 images from the clean
set of 18,264 images. Note that this 6,000 sample may still
contain duplicate or near-duplicate images. Even though the
training data for S1 and S3 are not exactly the same, we can
still try to compare the performance of the damage assessment
model with and without irrelevant images. As we see from S1
and S3 columns of Table 6, the scores for none category in S3
are lower than those in S1 whereas the scores for severe and
mild categories in S3 are higher than those in S1. After macro-
averaging the scores for all categories, we see that overall F1-
score for S3 is 1% higher than the overall F1-score for S2
while the macro-averaged AUC scores seem to be the same.
However, due to the fact that having duplicate or near-dupli-
cate images in the training and test sets yield untrustworthy
model results, we do not intend to elaborate any further on
this comparison.

In S4, we discard both duplicate and irrelevant images
from the raw data collection and then sample 6,000 images
from the remaining clean set of 10,481 images. S4 column of
Table 13 presents the results of the damage assessment experi-
ment on the sampled dataset, which does not contain dupli-
cate and irrelevant images. If we compare the performance
results for S3 and S4, we see that removing duplicate images
from the training data eliminates the artificial increase in the
performance scores, which is in agreement with the trend
observed between S1 and S2.

6. System performance experiments

To understand the scalability of the proposed system, we
conducted simulations to perform extensive stress testing.
The experiments have been run on an iMac with a configura-
tion of 32GB RAM, and a 3:5 GHz processor with 4 cores.
The simulation experiments were conducted using ,28K
images. We developed a simulator program to mimic the

behavior of the Tweet Collector module. The simulator can
be tuned to publish varying amounts of images (i.e., batches)
to Redis channels in a given unit time, for example, 50
images/sec or 1; 000 images/sec. To observe a module’s per-
formance in terms of throughput and latency, we gradually
increased the input load (i.e., number of images) while main-
taining a unit time (i.e., in our case 1 second). Latency is the
time taken by a module to process an image. As we deal with
a batch of images, the latency is computed as the sum of
processing times taken by a module to process all the images
in a batch, which can then be divided by the number of
images to get an average latency per image. On the other
hand, the throughput is computed as the number of images
processed by a module per unit time.

6.1. Image collector module

The Image Collector module maintains a list of unique image
URLs. One technical challenge here is to determine the opti-
mal size of the URL list so that the search process does not
increase system’s latency. To determine the optimal size, we
use the simulator to inject tweets with image URLs to the
Image Collector module using different input loads. In
Figure 7, we present the latency for the URL de-duplication
in the Image Collector module. As discussed in the Image
Collector subsection earlier, for the URL de-duplication we
maintain an in-memory list (i.e., a linked hash map data
structure), which requires constant time complexity of Oð1Þ
for adding and searching an element. As suggested by
Figure 7, the system is very efficient in removing duplicate
URLs while maintaining a low latency. The latency increases
slightly as we increase the input load. From a throughput

Table 6. Precision, Recall, F1 and AUC scores: S1 (with duplicates + with irrelevant), S2 (without duplicates + with irrelevant), S3 (with duplicates + without
irrelevant), S4 (without duplicates + without irrelevant).

S1 S2 S3 S4

AUC Pre. Rec. F1 AUC Pre. Rec. F1 AUC Pre. Rec. F1 AUC Pre. Rec. F1

None 0.98 0.91 0.96 0.94 0.98 0.91 0.97 0.94 0.94 0.86 0.93 0.90 0.95 0.86 0.95 0.91
Mild 0.31 0.48 0.18 0.25 0.26 0.41 0.12 0.18 0.37 0.53 0.20 0.29 0.30 0.55 0.14 0.23
Severe 0.95 0.88 0.89 0.88 0.91 0.85 0.84 0.84 0.95 0.88 0.91 0.90 0.91 0.86 0.85 0.86
Average 0.75 0.74 0.68 0.69 0.72 0.72 0.64 0.65 0.75 0.76 0.68 0.70 0.72 0.76 0.65 0.67
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Figure 7. Latency for the URL de-duplication in the Image Collector module.
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perspective, we observe that the Image Collector module is
capable of adding and searching URLs with a linear unit time.
Even though the system can handle high input loads effi-
ciently, we have set a limit of 100K in size for the unique
image URL list. Hence, oldest URLs are removed when the in-
memory list reaches this limit.

6.2. De-duplication filtering module

Once images are downloaded, the next step is filtering out
duplicate images as discussed in the Image Filtering sub-
section. The image de-duplication process involves
extracting image hashes, storing them into an in-memory
list (i.e., a linked hash map data structure), and checking
whether a newly arrived image hash matches with existing
hashes based on a distance threshold. Figure 8 presents
our findings from our simulation experiments for the De-
duplication Filtering module. We observe that latency var-
ies as we increase the batch size but the throughput
remains quite constant. On average it can process ~8
images per second. For this module, we set the limit of
in-memory list to 100K in size. Similar to the URL de-
duplication, we also remove the oldest image hashes when
the in-memory list reaches its limit.

6.3. Relevancy filtering module

In Figure 9, we present our findings of latency and
throughput from the simulation experiments for the
Relevancy Filtering module. Our relevancy classification
model is computationally expensive. From Figure 9, we

observe that it can process at most nine images per sec-
ond, and latency varies depending on the input load.
However, it is important to note that one can expect to
observe a significant improvement in latency and through-
put if the stress testing experiments are performed on a
GPU-based system rather than a CPU-based system as in
our case.

6.4. Damage assessment classifier

In terms of prediction time, the classifier can classify ~10
images per second as presented in a benchmark comparison
(Shi, Wang, Xu, & Chu, 2016). We observed a similar proces-
sing time from our exploratory analysis. With a similar argu-
ment to the Relevancy Filtering module experiments, a GPU-
based system is expected to yield a significantly better latency
and throughput performance than the current CPU-based
system.

6.5. Latency of the overall system

It is worthwhile to also look at the latency of the whole image
processing pipeline even though some parts of the system
depend on external factors such as the local network infra-
structure performance, image download speed from the Web,
etc. Therefore, in our simulation experiments, we hosted
images on the local server. In a real application, this latency
will increase as the system will download images from external
servers. From our analysis, we observed that if we increase the
batch size the latency grows exponentially. We can infer that
whole system can process on average ~50 images per minute,
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Figure 8. Latency (left) and throughput (right) for the De-duplication Filtering module.
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Figure 9. Latency (left) and throughput (right) for the Relevancy Filtering module.
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which we estimated by computing the sum of individual com-
ponents' latencies.

7. Discussion

Our experimental results and analytical findings suggest that
the proposed social media image processing pipeline consisting
of relevancy filtering, de-duplication, and damage assessment
modules are helpful in extracting useful information such as
severity of the damage observed in an image. In addition, our
pipeline reduces human annotation effort and cost required for
processing the social media imagery data. Hence, we believe the
contributions of the current study will advance the state of art
in social media image processing for crisis response and man-
agement. However, we also acknowledge that there are some
limitations of the current pipeline. Below we elaborate on the
implications of our experimental findings, existing limitations
of our system, and our future work in more detail.

Social media platforms provide quick access to situational
information during time-critical events. However, large amounts
of this data consist of irrelevant information, let alone useful, for
disaster response. For instance, Table 4 shows that 62% of the
imagery data used in this work is irrelevant or redundant. Hence,
to reduce information overload and to make other information
processing tasks more efficient and robust (e.g., damage assess-
ment through supervised machine learning), noisy data must be
removed. This work presented techniques to prevent two major
sources of noise, that is, near-to-exact duplicate and irrelevant
images. Our experimental results showed that having such robust
filtering techniques in place is quintessential. However, under-
standing and modeling actually the relevant image content
(instead of what is irrelevant) still remains to be a core challenge
and needs to be addressed more rigorously. Since different huma-
nitarian organizations have different information needs, the

definition of relevancy should be adapted or formulated according
to the particular needs of each organization. Adapting a baseline
relevancy model or building a new one from scratch is a decision
that has to be made at the onset of a crisis event, which is what we
aim to address in our future work.

We have also conducted experiments in four different settings
(S1–S4) for damage severity assessment after image filtering.
Although we observe an overall decrease in all performance scores
in S2 as compared to S1, we claim that the performance results for
S2 are more trustworthy for the following reason: In S1, due to the
appearance of duplicate or near-duplicate images both in training
and test sets, the classifier gets biased and thus shows artificially
high but unreliable performance. More interestingly, we can see
the benefit of removing irrelevant images when the data is already
free from duplicates. That is, we can compare the results of the S2
and S4 settings, even though the training data for both settings are
not exactly the same. At the category level, we observe a similar
behavior as before, where the scores for the none category in S4
are slightly lower than those in S2 while the scores for the severe
andmild categories in S4 are slightly higher than those in S2. If we
compare the macro-averaged F1-scores, we see that S4 outper-
forms S2 by a small margin of 2%. In order to assess whether this
difference in F1-scores between S2 and S4 is significant or not, we
perform a permutation test (or sometimes called a randomization
test) in the following manner. We randomly shuffle 1,000 times
the input test image labels and the output model predictions
within a common pool of S2 and S4 image subsets. Then, for
each shuffle, we compute the difference in F1-scores for S2 and S4.
Eventually, we compare the observed F1-score distance against
the distribution of such sampled 1,000 F1-score differences to see
if the observed value is statistically significantly away from the
mean of the sample distribution. In our case, we get p ¼ 0:077,
which is not statistically significant but shows a certain trend
toward the significance.

Figure 10. Precision-recall curves for all four settings: S1 (with duplicates + with irrelevant), S2 (without duplicates + with irrelevant), S3 (with duplicates + without
irrelevant), S4 (without duplicates + without irrelevant).
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In order to have a closer look at the performance of the
damage assessment classifier, we plotted the precision-recall
curves for all four aforementioned settings in Figure 10. It is
evident that in three-class classification task, the hardest class
(according to the classifier performance) is the mild damage
category. In all the settings, we observe a low AUC for the
mild category compared to the other two categories. One
obvious justification of this is the low prevalence of the mild
category compared to other categories (see Table 5). More
training data should fix this issue, which we plan as a future
work. Otherwise, in all settings, the classifiers achieve high
accuracy in classifying images into the severe and none cate-
gories. In general, in terms of machine training, the level of
noise in a dataset affects the quality of the trained models, and
hence, the overall performance of the designed system (i.e.,
high level of noise leads to a low-quality model, which in turn,
leads to a poor system performance). In terms of human
annotation, a noisy dataset also causes sub-optimal use of
the available budget.

At the moment our system considers one universal model
for damage assessment that is expected to work for all types of
disasters in real-world scenarios. However, images collected
after an earthquake potentially have different image character-
istics than those collected after a hurricane. How do key
features of earthquake images differ from key features of
hurricane images? To answer this question, we need to per-
form an exploratory study to understand the similarities as
well as differences between key image features for different
event types. This type of analyses will help us to build more
robust classifiers, that is, either general classifiers for multiple
disaster types or classifiers specific to certain disaster types as
it seems quite unlikely that a single universal model can
capture the variance of image features across all possible
disaster types. Therefore, we state this as a potential limitation
of the current study, and anticipate that an ensemble of
disaster type-specific damage assessment models would yield
better overall performance than a single universal model does.

Regarding the system performance experiments, the overall
performance of different modules in the system is at a reason-
able level. Given the fact that we employ computationally
heavy deep neural network models (e.g., VGG-16) on CPU
power, the system’s ability to process about 50 images per
minute seems acceptable. During an on-going crisis situation,
even if the system is able to produce a handful of most
informative images in real-time, formal crisis responders
would greatly benefit from these selected images. As stated
earlier, we believe other factors such as more powerful com-
puting resources (e.g., GPUs vs. CPUs) will significantly
advance the system’s latency and throughput performance.

In the current work, we used labeled data from two differ-
ent sources (i.e., paid and volunteers). It is worth performing
a quality assessment study of these two types of crowdsour-
cing. In doing so, the goal would be to understand if there are
differences in the quality of annotation agreements between
annotators from two diverse platforms, i.e., Crowdflower vs.
AIDR. We consider this type of quality assessment study as a
potential future work.

Besides the relevancy, the veracity of the extracted infor-
mation is of ultimate importance for humanitarian

organizations to gain situational awareness and to launch
relief efforts accordingly. We have not considered evaluating
the veracity of images for the particular set of events investi-
gated in this study. However, we plan to tackle this important
challenge in the future.

In the end, this work is a first step toward building more
innovative solutions for humanitarian organizations to gain
situational awareness and to extract actionable insights from
social media imagery data in real-time. We have only dealt
with just the tip of the iceberg and there is a lot of room for
improvement to achieve the ultimate goal.

8. Conclusion

User-generated content on social media at the time of dis-
asters is useful for crisis response and management.
However, understanding this high-volume, high-velocity
data is a challenging task for humanitarian organizations.
Existing studies indicate the usefulness of imagery data
posted on social networks at the time of disasters.
However, due to large amounts of redundant and irrelevant
images, efficient utilization of the imagery content both
using crowdsourcing or machine learning is a great chal-
lenge. In this article, we presented a social media image
processing pipeline, which includes two types of noise
filtering (i.e., image relevancy and de-duplication) and the
damage assessment classifier. To filter out irrelevant image
content, we used a transfer learning approach based on the
state-of-the-art deep neural networks. For image de-dupli-
cation, we employed perceptual hashing techniques. We also
performed an extensive experimentation on a number of
real-world disaster datasets to show the utility of our pro-
posed image processing pipeline. Moreover, we have per-
formed a number of stress tests to determine the latency
and throughput of individual modules. Initial performance
results show the capability of our system to help formal
crisis responders process images on social media in real-
time.

In summary, based on the experimental analyse and findings,
we believe the proposed real-time online image processing pipe-
line can help in extracting useful information from social media
imagery content in a timely and efficient manner. Among other
use cases, we believe that the presented image processing pipe-
line can enable humanitarian organizations in early decision-
making by gaining situational awareness during an on-going
event, or assessing the severity of damage incurred by a disaster.
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