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Abstract—Images shared on social media help crisis managers
gain situational awareness and assess incurred damages, among
other response tasks. As the volume and velocity of such content
are typically high, real-time image classification has become an
urgent need for a faster disaster response. Recent advances in
computer vision and deep neural networks have enabled the
development of models for image classification for a number
of tasks, including detecting crisis incidents, filtering irrelevant
images, classifying images into specific humanitarian categories,
and assessing the severity of the damage. To develop robust
models, it is necessary to understand the capability of the publicly
available pre-trained models for these tasks, which remains to
be under-explored in the crisis informatics literature. In this
study, we address such limitations by investigating ten different
network architectures for four different tasks using the largest
publicly available datasets for these tasks. We also explore various
data augmentation strategies, semi-supervised techniques, and
a multitask learning setup. In our extensive experiments, we
achieve promising results.

Index Terms—Social media image classification, Multitask
Learning, Crisis informatics, Humanitarian tasks, Disaster re-
sponse

I. INTRODUCTION

Social media is widely used during natural or human-
induced disasters to disseminate information and obtain valu-
able insights quickly. People post content (i.e., through dif-
ferent modalities such as text, image, and video) on social
media to ask for help, to offer support, to identify urgent
needs, or to share their feelings. Such information is help-
ful for humanitarian organizations to plan and launch relief
operations. As the volume and velocity of the content are
significantly high, it is crucial to have systems to process
social media content to facilitate rapid response automatically.
There has been a surge of research studies in this domain
in the past couple of years. The focus has been to analyze
social media data and develop computational models using
varying modalities to extract actionable information. Among
different modalities (e.g., text and image), more focus has
been given to textual content analysis compared to imagery
content (see [1]–[3] for comprehensive surveys). However,
many past research works have demonstrated that images
shared on social media during a disaster event can also assist
humanitarian organizations. For example, Nguyen et al. [4]
use images shared on Twitter to assess the severity of the
infrastructure damage, and Mouzannar et al. [5] focus on
identifying damages in infrastructure as well as environmental
elements.

For a clear understanding, we provide an example pipeline
in Figure 1a which demonstrates how different disaster-related
image classification models can be used in real-time for
information categorization. As presented in the figure, the
four different classification tasks such as (i) disaster types, (ii)
informativeness, (iii) humanitarian, and (iv) damage severity
assessment, can significantly help crisis responders during
disaster events. For example, disaster type classification model
can be used for real-time event detection as shown in Fig-
ure 1b. Similarly, the informativeness model can be used
to filter non-informative images, the humanitarian model can
be used to discover fine-grained categories, and the damage
severity model can be used to assess the impact of the
disaster. Current literature reports either one or two tasks
using one or two network architectures. Another limitation
is that there have been limited datasets for disaster-related
image classification. Very recently, the study by Alam et al. [6]
developed a benchmark dataset,1 which is consolidated from
existing publicly available resources. The development process
of this dataset consists of data curation from different existing
sources, development of new data for new tasks, creating
non-overlapping2 training, development, and test sets. The
reported benchmark dataset targeted the four tasks as shown
in Figure 1a.

In this study, we build upon [6] and address the aforemen-
tioned limitations by posing the following Research Questions
(RQs):

• RQ1: Can data consolidation help?
• RQ2: Among various neural network architectures with

pre-trained weights, which one is more suitable for dif-
ferent downstream disaster-related image classification
tasks?

• RQ3: Does data augmentation or semi-supervised learn-
ing help to improve the model performance?

• RQ4: Is multitask learning an ideal solution to reduce
computational complexity when there is need to make
predictions for multiple tasks simultaneously?

To understand the benefits of data consolidation (RQ1), we
extended the work by Alam et al. [6] with more in-depth anal-
ysis. Our motivation for RQ2 is that there has been significant
progress in neural network architectures for image processing

1We refer to this dataset as Crisis Benchmark Dataset throughout the paper.
2Duplicate images are identified between test and training sets and moved

from the test set to the training set.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

(a) Disaster image classification pipeline.

(b) Event detection use case showing landslide images.

Fig. 1: Disaster image classification pipeline that demonstrate a real use case – landslide image classification.

in the last few years; however, they have not been widely
explored in the crisis informatics3 domain for disaster response
tasks. Hence, we investigated several neural network architec-
tures for different disaster-related image classification tasks.
Since augmentation and self-training-based techniques [7],
[8] have shown success to yield more generalized models
and sometimes improve the performance, we pose RQ3 and
investigate them for the mentioned tasks. For the social media
image classification tasks shown in Figure 1, it is necessary to
run the mentioned models in sequence or parallel for the same
input image. Running multiple models can be prohibitively
expensive when there is a need to analyze many social media
images. Having a single model for dealing with multiple
tasks can significantly alleviate the computational complexity.
Hence, we pose RQ4 to instigate research in this direction. The
Crisis Benchmark Dataset has not been originally developed
for multitask learning setup. However, the related metadata
information (e.g., image ids) are available, and we utilized
such information to create data splits for multitask learning
while trying to maintain the same training, development, and

3https://en.wikipedia.org/wiki/Disaster informatics

test splits. As our experiment shows, this is challenging due
to the incomplete labels for different tasks (see more details
in Section IV-F).

To summarize, our contributions in this study are as follows:
• We present more detailed results highlighting the benefit

of data consolidation.
• We address four tasks using several state-of-the-art neural

network architectures on different data splits.
• We investigate various data augmentation techniques and

show that model generalization improves with data aug-
mentation.

• We explore semi-supervised learning and multitask learn-
ing to have a single model while addressing multiple
tasks. Based on the findings, we provide research direc-
tions for future studies.

• We also provide insights using Gradient-weighted Class
Activation Mapping [9] to demonstrate what class-
specific discriminative properties are learned by the net-
works.

The rest of the paper is organized as follows. Section II
provides a brief overview of the existing work. Section III
introduces the tasks and describes the datasets used in this

https://en.wikipedia.org/wiki/Disaster_informatics
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study. Section IV explains the experiments, Section V presents
the results, and Section VI provides a discussion. Finally, we
conclude the paper in Section VIII.

II. RELATED WORK

A. Social Media Content for Disaster Response

Most of the earlier research efforts in crisis informatics
are mainly focused on textual content analysis [3]. However,
lately there has been a growing interest on the imagery content
analysis as images posted on social media during disasters can
play significant role as reported in many studies [4], [10]–
[16]. Recent works include categorizing the severity of damage
into discrete levels [4], [12], [13] or quantifying the damage
severity as a continuous-valued index [17], [18]. Such models
were also used in real-time disaster response scenarios by
engaging with emergency responders [19].

The studies on image processing in the crisis informatics
domain are relatively few compared to the studies on analyzing
textual content for humanitarian aid.4 With recent successes
of deep learning for image classification, research works have
started to use social media images for humanitarian aid. The
importance of imagery content on social media for disaster
response tasks has been reported in many studies [4], [10]–
[13], [20], [21]. For instance, the analysis of flood images
has been studied in [10], in which the authors reported that
the existence of images with the relevant textual content is
more informative. Similarly, the study by Daly and Thom [11]
analyzed fire event images, which are extracted from social
media data. Their findings suggest that images with geotagged
information are helpful to locate the fire-affected areas.

The analysis of imagery content shared on social media
has recently been explored using deep learning techniques for
damage assessment purposes. Most of these studies categorize
the severity of damage into discrete levels [4], [12], [13]
whereas others quantify the damage severity as a continuous-
valued index [17], [18]. Other related work include data
scarcity issue by employing more sophisticated models such as
adversarial networks [22], [23], disaster image retrieval [24],
image classification in the context of bush fire emergency [25],
flooding photo screening system [26], sentiment analysis from
disaster image [27], monitoring natural disasters using satellite
images [28], and flood detection using visual features [29].

B. Real-time Systems

Recently, Alam et al. [21] presented an image processing
pipeline to extract meaningful information from social media
images during a crisis situation, which has been developed
using deep learning-based techniques. Their image process-
ing pipeline includes collecting images, removing duplicates,
filtering irrelevant images, and finally classifying them with
damage severity. Such a system has been used during several
disaster events, and one such example is the deployment during
Hurricane Dorian, reported in [19]. The system has been
deployed for 13 days, and it collected around ∼280K images.
These images are then automatically classified and used by a

4https://en.wikipedia.org/wiki/Humanitarian aid

volunteer response organization, Montgomery County Mary-
land Community Emergency Response Team (MCCERT).
Another example use case is the early detection of disaster-
related damage to cultural heritage [30].

C. Multimodality (Image and Text)

The exploration of multimodality has also received atten-
tion in the research community [31], [32]. In [31], authors
explore different fusion strategies for multimodal learning.
Similarly, in [32] a cross-attention-based network is exploited
for multimodal fusion. The study in [33] reports a multimodal
system for flood image detection, which achieves a precision
of 87.4% in a balance test set. In another study, the authors
propose a similar multimodal system for on-topic vs. off-
topic social media post classification and report an accuracy
of 92.94% with imagery content [34]. The study in [35]
explores different classical machine learning algorithms to
classify relevant vs. irrelevant tweets using textual and imagery
information. On the imagery content, they achieved an F1-
score of 87.74% using XGboost [36]. The study in [37]
proposes a simple, computationally inexpensive, multimodal
two-stage framework to classify tweets (text and image) with
built-infrastructure damage vs. nature-damage. The study in-
vestigates their approach using a home-grown dataset, and the
SUN dataset [38]. Mouzannar et al. [5] proposes a multimodal
dataset, which has been developed for training a damage
detection model. Similarly, Ofli et al. [39] explores unimodal
as well as different multimodal modeling approaches based on
a collection of multimodal social media posts.

D. Transfer Learning for Image Classification

For the image classification task, transfer learning has been
a popular approach, where a pre-trained neural network is
used to train a model for a new task [5], [39]–[43]. For
this study, we follow the same approach using different deep
learning architectures. For disaster related image classification,
there have been studies where transfer-learning based models
have been used either as feature extractors or for fine-tuning
the model. Such studies include flood detection from social
media multimodal content [44], disaster related tasks in a
multitask learning [45], real-time system for disaster image
classification during hurricane [46], sentiment analysis from
disaster images [47], aerial image classification for disaster
response [48], and deep features with multimodal training [49].

E. Datasets

Currently, publicly available datasets include damage sever-
ity assessment dataset [4], CrisisMMD [50] and damage
identification multimodal dataset [5]. The first dataset is only
annotated for images, whereas the last two are annotated for
both text and images. Other relevant datasets are Disaster Im-
age Retrieval from Social Media (DIRSM) [51] and MediaEval
2018 [52]. The dataset reported in [53] is constructed for
detecting damage as an anomaly using pre-and post-disaster
images. It consists of 700,000 building annotations. A similar
and relevant work is the development of the Incidents dataset

https://en.wikipedia.org/wiki/Humanitarian_aid


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

[54], which consists of 446684 manually labeled Web images
with 43 incident categories. The Crisis Benchmark Dataset
reported in [6] is the largest dataset so far for social media
disaster image classification.

For this study, we use the Crisis Benchmark Dataset, and
our study differs from [6] in a number of ways. We provide
more detailed experimental results on dataset comparison
(i.e., individual vs. consolidated), compare different network
architectures with a statistical significance test, and report
the efficacy of data augmentation. We have also utilized
a large unlabeled dataset to enhance the capability of the
current model. We created multitask data splits from Crisis
Benchmark Dataset and report experimental results using both
missing/incomplete and complete labels, which can serve as a
baseline for future works.

III. TASKS AND DATASETS

For this study, we addressed four different disaster-related
tasks that are important for humanitarian aid. Below we
provide details of each task and the associated class labels.

A. Tasks

1) Disaster type recognition: When ingesting images from
unfiltered social media streams, it is important to detect
different disaster types automatically from these images. For
instance, an image can depict a wildfire, flood, earthquake,
hurricane, and other types of disasters. In the literature, disas-
ter types have been defined in different hierarchical categories
such as natural, human-induced, and hybrid [55]. Natural
disasters are events that result from natural phenomena (e.g.,
fire, flood, earthquake). Human-induced disasters result from
human actions (e.g., terrorist attacks, accidents, wars, and
conflicts). Hybrid disasters result from human actions, which
affect natural phenomena afterward (e.g., deforestation results
in soil erosion and climate change). The class labels for
disaster type include (i) earthquake, (ii) fire, (iii) flood, (iv)
hurricane, (v) landslide, (vi) other disaster (to cover all other
disaster types, e.g., plane crash), and (vii) not disaster (for
images that do not show any identifiable disaster).

2) Informativeness: Images posted on social media during
disasters do not always contain informative or useful content
for humanitarian aid (e.g., an image showing damaged infras-
tructure due to flood, fire, or any other disaster event). It is
necessary to remove any irrelevant or redundant content to
facilitate crisis responders’ efforts more effectively. Therefore,
the purpose of this classification task is to filter out irrelevant
images. The class labels for this task are (i) informative and
(ii) not informative.

3) Humanitarian: An important aspect of crisis responders
is to assist people based on their needs, which requires
information to be classified into more fine-grained categories
that can trigger specific actions. In the literature, humanitarian
categories often include affected individuals; injured or dead
people; infrastructure and utility damage; missing or found
people; rescue, volunteering, or donation effort; and vehicle
damage [50]. In this study, we focus on four categories that
are deemed to be the most prominent and important for crisis

Fig. 2: An image annotated as (i) fire event, (ii) informative,
(iii) infrastructure and utility damage, and (iv) severe damage.

responders such as (i) affected, injured, or dead people, (ii)
infrastructure and utility damage, (iii) rescue volunteering or
donation effort, and (iv) not humanitarian.

4) Damage severity: Assessing the severity of the damage
is important to help the affected community during disaster
events. The severity of damage can be assessed based on the
physical destruction of a built structure visible in an image
(e.g., destruction of bridges, roads, buildings, burned houses,
and forests). Following the work reported in [4], we define the
categories for this classification task as (i) severe damage, (ii)
mild damage, and (iii) little or none.

Figure 2 shows an example image with the labels for all
four tasks.

B. Datasets

As mentioned earlier, we used the dataset reported in [6].5

This dataset has been developed by consolidating existing
publicly available sources, and by defining non-overlapping
training, development, and test splits. For the sake of clarity
and completeness, we provide a brief overview of the dataset.
More details about the dataset curation and consolidation
process can be found in [6].

1) Damage Assessment Dataset (DAD): The damage as-
sessment dataset consists of labeled imagery data with damage
severity levels such as severe, mild, and little-to-no dam-
age [4]. The images have been collected from two sources:
AIDR [56] and Google. To crawl data from Google, au-
thors used the following keywords: damage building, damage
bridge, and damage road. The images from AIDR were
collected from Twitter during different disaster events such
as Typhoon Ruby, Nepal Earthquake, Ecuador Earthquake,
and Hurricane Matthew. The dataset contains ∼25K images
annotated by paid workers as well as volunteers. In this
study, we use this dataset for the informativeness and damage
severity tasks. For the informativeness task, the study in [6]
mapped the mild and severe images into informative class

5https://crisisnlp.qcri.org/crisis-image-datasets-asonam20

https://crisisnlp.qcri.org/crisis-image-datasets-asonam20
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and manually categorized the little-to-no damage images into
informative and not informative categories. For the damage
severity task, the label little-to-no damage mapped into little
or none to align with other datasets.

2) CrisisMMD: This is a multimodal (i.e., text and image)
dataset, which consists of 18,082 images collected from tweets
during seven disaster events crawled by the AIDR system [50].
The data is annotated by crowd workers using the Figure-
Eight platform6 for three different tasks: (i) informativeness
with binary labels (i.e., informative vs. not informative), (ii)
humanitarian with seven class labels (i.e., “infrastructure and
utility damage”, “vehicle damage”, “rescue, volunteering, or
donation effort”, “injured or dead people”, “affected individu-
als”, “missing or found people”, “other relevant information”
and “not relevant”), (iii) damage severity assessment with three
labels (i.e., severe, mild and “little or no damage”). For the
humanitarian task similar class labels are grouped together.
The images with labels injured or dead people and affected
individuals are mapped into one class label affected, injured,
or dead people; infrastructure and utility damage and vehicle
damage are mapped into infrastructure and utility damage;
other relevant information, and not relevant are mapped into
not humanitarian. The images with label missing or found
people are removed as it is difficult to identify. This results in
four class labels for humanitarian task.

3) AIDR Disaster Type Dataset (AIDR-DT): AIDR-DT
dataset consists of tweets collected from 17 disaster events
and 3 general collections. The tweets of these collections
have been collected by the AIDR system [56]. The 17 dis-
aster events include flood, earthquake, fire, hurricane, terrorist
attack, and armed-conflict. The tweets in general collections
contain keywords related to natural disasters, human-induced
disasters, and security incidents. Images are crawled from
these collections for disaster type annotation. The labeling of
these images was performed in two steps. First, a set of images
were labeled as earthquake, fire, flood, hurricane, and none of
these categories. Then, a sample of ∼2,200 images labeled as
none of these categories in the previous step are selected for
annotating not disaster and other disaster categories.

For the landslide category, images are crawled from Google,
Bing, and Flickr using keywords landslide, mudslide, “mud
slides”, landslip, “rock slides”, rockfall, “land slide”, earthslip,
rockslide, and “land collapse”. As images have been collected
from different sources, therefore, it resulted in having dupli-
cates. Duplicate filtering has been applied to remove exact-
and near-duplicate images to resolve this issue. Then, the
remaining images were manually labeled as landslide and not
landslide. The resulted annotated dataset consists of labeled
images with seven categories defined in Section III-A1.

4) Damage Multimodal Dataset (DMD): The multimodal
damage identification dataset consists of 5,878 images col-
lected from Instagram and Google [5]. The authors of the
study crawled the images using more than 100 hashtags, which
are proposed in crisis lexicon [57]. The manually labeled
data consist of six damage class labels: fires, floods, natural
landscape, infrastructural, human, and non-damage. The non-

6Currently acquired by https://appen.com/

damage image includes cartoons, advertisements, and images
that are not relevant or useful for humanitarian tasks. The study
by Alam et al. [6] re-labeled images for all four tasks: disas-
ter type, informativeness, humanitarian, and damage severity
using the same class labels discussed in the previous section.

C. Data Consolidation and Statistics

The datasets introduced in previous section comprises im-
ages collected from various sources such as Google, Bing, Ya-
hoo, and Twitter. Since only the images collected from Twitter
contain social media information, only those images that have
Twitter’s JSON objects (∼27K images) have been analyzed to
understand the distribution of images across different disaster
events. Table I reports statistics of the collected tweets and
images for different events. It appears that people share images
in only 1 to 5% of the posts.

Before consolidating the datasets, each dataset has been
divided into training (train), development (dev), and test sets
with 70:10:20 ratio, respectively. The purpose was threefold:
(i) train and evaluate individual datasets on each task, (ii) have
a close-to-equal distribution from each dataset into the final
consolidated dataset, and (iii) provide the research community
an opportunity to use the splits independently. After data split,
duplicate images are identified across sets and moved into the
training set to create a non-overlapping test set.

For the exact- and near-duplicate image identification, we
extracted feature representations for each image using a pre-
trained ResNet18 [58] model and computed Euclidean distance
between all possible image pairs. We then manually verified
a subset of image pairs and determined a threshold of 2.6
to automatically find exact- and near-duplicate images. More
details about the duplicate identification process can be found
in [6].

During the experiments, the training set was used to train
the model, the development set was used for the fine-tuning,
and the test set was used for the final evaluation. Since
the primary motivation to perform data consolidation is to
develop robust deep learning models with large amounts of
data, all individual training, development, and test sets are
merged into the consolidated training, development, and test
sets, respectively. As combining multiple datasets can results
in duplicate images in train and test set, after merging the
dataset, we repeat the same duplicate identification procedure
to maintain non-overlapping sets for different tasks.

Finally, Tables II, III, IV, V, and VI show the label
distribution of all datasets for all four tasks. Some class labels
are skewed in individual datasets. For example, in disaster
type datasets (Table II), the distribution of the “other disaster”
label is low in the AIDR-DT dataset, whereas the distribution
of the “landslide” label low in the DMD dataset. For the
informativeness task, low distribution is observed for the
“informative” label. Moreover, for the humanitarian task, we
have low distribution for the “rescue volunteering or donation
effort” label in the DMD dataset, and for the damage severity
task “mild” label in CrisisMMD and DMD datasets. However,
the consolidated dataset creates a fair balance across class
labels for different tasks, as shown in Table VI.

https://appen.com/
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TABLE I: Number of tweets and images collected during different disaster events.

Event name Year # Tweets # Images % Images Start Date End Date

Nepal earthquake 2015 4,223,936 132,361 3.13 25-Apr-2015 19-May-2015
Paris attack 2015 10,599,629 499,953 4.72 14-Nov-2015 3-Dec-2015
South india floods 2015 2,994,119 141,831 4.74 3-Dec-2015 6-Dec-2015
Food insecurity in Yemen 2015 1,107,931 63,686 5.75 25-Sep-2015 19-Nov-2015
Italy earthquake 2016 3,382,698 167,331 4.95 26-Oct-2016 27-Nov-2016
Hurricane Irma 2017 3,517,280 176,972 5.03 6-Sep-2017 21-Sep-2017
Hurricane Harvey 2017 6,664,349 321,435 4.82 26-Aug-2017 20-Sep-2017
Hurricane Maria 2017 2,953,322 52,231 1.77 20-Sep-2017 13-Nov-2017
Mexico earthquake 2017 383,341 7,111 1.86 20-Sep-2017 6-Oct-2017
California wildfires 2017 455,311 10,130 2.22 10-Oct-2017 27-Oct-2017
Iraq-Iran earthquake 2017 207,729 6,307 3.04 13-Nov-2017 19-Nov-2017
Sri Lanka floods 2017 41,809 2,108 5.04 31-May-2017 3-Jul-2017
Syria attacks 2017 5,381,866 107,513 2.00 6-Apr-2017 26-Apr-2017
Ukraine conflict 2017 1,268,942 30,289 2.39 5-Nov-2017 13-Nov-2017
Kerala flood 2018 3,044,703 15,767 0.52 17-Aug-2018 12-Sep-2018
Hurricane Florence 2018 623,074 12,879 2.07 11-Sep-2018 24-Sep-2018
Hurricane Michael 2018 243,263 5,106 2.10 10-Oct-2018 27-Oct-2018

TABLE II: Data split for the disaster type task.

Dataset Class labels Train Dev Test Total

AIDR-DT

Earthquake 1,910 201 376 2,487
Fire 990 105 214 1,309
Flood 2,059 241 533 2,833
Hurricane 1,188 142 279 1,609
Landslide 901 119 257 1,277
Not disaster 1,507 198 415 2,120
Other disaster 65 6 17 88

Total 8,620 1,012 2,091 11,723

DMD

Earthquake 130 17 35 182
Fire 255 36 71 362
Flood 263 35 70 368
Hurricane 253 36 73 362
Landslide 38 5 11 54
Not disaster 2,108 288 575 2,971
Other disaster 1,057 145 287 1,489

Total 4,152 506 1,130 5,788

TABLE III: Data split for the informativeness task.

Dataset Class labels Train Dev Test Total

DAD Informative 15,329 590 2,266 18,185
Not informative 5,950 426 1,259 7,635

Total 21,279 1,016 3,525 25,820

CrisisMMD Informative 7,233 635 1,507 9,375
Not informative 6,535 551 1,621 8,707

Total 13,768 1,186 3,128 18,082

DMD Informative 2,071 262 573 2,906
Not informative 2,152 240 580 2,972

Total 4,223 502 1,153 5,878

AIDR-Info Informative 627 66 172 865
Not informative 6,677 598 1,796 9,071

Total 7,304 664 1,968 9,936

IV. EXPERIMENTS

Our experiments include (i) individual vs. consolidated
dataset comparisons (RQ1), (ii) neural network architecture
comparisons on the consolidated dataset (RQ2), (iii) data
augmentation (RQ3), (iv) semi-supervised learning (RQ3),
and (iv) multitask learning (RQ4). Next we first present our

TABLE IV: Data split for the humanitarian task.

Class labels Train Dev Test Total

CrisisMMD

Affected, injured, or dead people 521 51 100 672
Infrastructure and utility damage 3,040 299 589 3,928
Not humanitarian 3,307 296 807 4,410
Rescue volunteering or donation effort 1,682 174 375 2,231

Total 8,550 820 1,871 11,241

DMD

Affected, injured, or dead people 242 28 63 333
Infrastructure and utility damage 933 125 242 1,300
Not humanitarian 2,736 314 744 3,794
Rescue volunteering or donation effort 74 9 18 101

Total 3,985 476 1,067 5,528

TABLE V: Data split for the damage severity task.

Dataset Class labels Train Dev Test Total

DAD

Little or none 7,881 1,101 1,566 10,548
Mild 2,828 388 546 3,762
Severe 9,457 673 1,380 11,510

Total 20,166 2,162 3,492 25,820

CrisisMMD

Little or none 317 35 67 419
Mild 547 56 125 728
Severe 1,629 144 278 2,051

Total 2,493 235 470 3,198

DMD

Little or none 2,874 331 778 3,983
Mild 508 60 132 700
Severe 857 110 228 1,195

Total 4,239 501 1,138 5,878

experimental setup, and then, discuss different experiments
that we conducted in this study.

A. Experimental Setup

We employ the transfer learning approach to perform ex-
periments, which has shown promising results for various
visual recognition tasks in the literature [40]–[43]. The idea
of the transfer learning approach is to use existing weights of
a pre-trained model for different downstream tasks. We use
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TABLE VI: Data splits for the consolidated dataset for all
tasks.

Class labels Train Dev Test Total

Disaster Type

Earthquake 2,058 207 404 2,669
Fire 1,270 121 280 1,671
Flood 2,336 266 599 3,201
Hurricane 1,444 175 352 1,971
Landslide 940 123 268 1,331
Not disaster 3,666 435 990 5,091
Other disaster 1,132 143 302 1,577

Total 12,846 1,470 3,195 17,511

Informativeness

Informative 26,486 1,432 3,414 31,332
Not informative 21,700 1,622 5,063 28,385

Total 48,186 3,054 8,477 59,717

Humanitarian

Affected, injured, or dead people 772 73 160 1,005
Infrastructure and utility damage 4,001 406 821 5,228
Not humanitarian 6,076 578 1,550 8,204
Rescue volunteering or donation effort 1,769 172 391 2,332

Total 12,618 1,229 2,922 16,769

Damage Severity

Little or none 11,437 1,378 2,135 14,950
Mild 4,072 489 629 5,190
Severe 12,810 845 1,101 14,756

Total 28,319 2,712 3,865 34,896

the weights of the networks pre-trained using ImageNet [59]
to initialize our model. We adapt the last layer (i.e., softmax
layer) of the network according to the particular classification
task at hand instead of the original 1,000-way classification.
The transfer learning approach allows us to transfer the
features and the parameters of the network from the broad
domain (i.e., large-scale image classification) to the specific
one. Put specifically, we design a binary classifier for the in-
formativeness task and multi-class classifiers for the remaining
three tasks. We train the models using the Adam optimizer [60]
with an initial learning rate of 10−5, which is decreased by
a factor of 10 when accuracy on the development set stops
improving for 10 epochs. The models were trained for 150
epochs. We performed all experiments using the the PyTorch
library.7 To measure the performance of each classifier, we use
weighted average precision (P), recall (R), and F1-score (F1).

B. Dataset Comparisons

To determine whether consolidated data helps in achieving
better performance, we train the models using training sets
from the individual and consolidated datasets. However, we
always test the models on the consolidated test set. As our
test data is the same across different experiments, this ensures
that results are comparable. Since we have four different tasks,
consisting of fifteen different datasets, we only experimented
with the ResNet18 [58] network architecture to manage the
computational load.

7https://pytorch.org/

C. Network Architectures

Currently available neural network architectures come with
different computational complexity. As one of our goals is to
deploy the models in real-time applications, we exploit them to
understand their performance differences. Another motivation
is that current literature in crisis informatics only reports
results using one or two network architectures (e.g., VGG16
in [39], InceptionNet in [5]), which may lead to sub-optimal
outcomes. Therefore, in this study, we experiment with several
neural network architectures including ResNet18, ResNet50,
ResNet101 [58], AlexNet [61], VGG16 [62], DenseNet [63],
SqueezeNet [64], InceptionNet [65], MobileNet [66], and
EfficientNet [67].

D. Data Augmentation

Data augmentation is a commonly used technique to im-
prove the generalization of deep neural networks in the ab-
sence of large-scale datasets. We experiment with the recently
proposed RandAugment [7] method for image augmentation.
In literature, RandAugment was proposed as a fast alternative
for learned augmentation strategies. We used the PyTorch im-
plementation8 in our experiments. To increase the diversity of
generated examples, we used the following 16 transformations,

1) AutoContrast
2) Equalize
3) Invert
4) Rotate
5) Color
6) Posterize

7) Solarize
8) SolarizeAdd
9) Contrast

10) Brightness
11) Sharpness
12) ShearX

13) ShearY
14) CutoutAbs
15) TranslateX
16) TranslateY

where augmentation strengths can be controlled with two
tunable parameters N and M where N indicates the number
of augmentation transformations to apply sequentially, and M
indicates the magnitude for all the transformations.

Each transformation resides on an integer scale from 0 to
30, with 30 being the maximum strength. In our experiments,
we use constant magnitude M for all augmentations. The aug-
mentation method then boils down to randomly selecting N
transformations and applying each transformation sequentially
with strength corresponding to scale M .

In addition, we used weight decay, which is one of the
most commonly used techniques for regularizing parametric
machine learning models [68]. This helps to reduce the over-
fitting of the models and avoids exploding gradient.

We have conducted the data augmentation experiments
using all ten different neural network architectures. We used a
weight decay of 10−3 and other hyper-parameters remain the
same as discussed in Section IV-A.

E. Semi-supervised Learning

State-of-the-art image classification models are often trained
with a large amount of labeled data, which is prohibitively
expensive to collect in many applications. Semi-supervised
learning is a powerful approach to mitigate this issue and

8https://github.com/ildoonet/pytorch-randaugment

https://github.com/ildoonet/pytorch-randaugment
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leverage unlabeled data to improve the performance of ma-
chine learning models. Since unlabeled data can be obtained
without significant human labor, performance boost gained
from semi-supervised learning comes at low cost and can be
scaled easily. In literature many semi-supervised techniques
has been proposed focusing on deep learning [8], [69]–[79].
Among them self-training approach is one of the earliest [80],
which has been adopted for deep neural network. The self-
training approach, also called pseudo-labeling [8], uses the
model’s prediction as a label and retrains the model against it.

For this study, we use Noisy student (i.e., a simple self-
training approach) training, which was proposed in [69] as
a semi-supervised learning approach to improve the accuracy
and robustness of state-of-the-art image classification models.
The algorithm consists of three main steps:

Step 1: Train a teacher model on labeled images
Step 2: Use the teacher model to generate pseudo labels on

unlabeled images
Step 3: Train a student model on combined labeled and

pseudo labeled images

The algorithm can be iterated multiple times by treating the
student as the new teacher and labeling the unlabeled images
with this model. During the learning phase of the student,
different noises can be injected, such as dropout [81] and
data augmentation via RandAugment [7]. The student model is
made larger than or equal to the teacher. The presence of noise
and larger model capacity help the student model generalize
better than the teacher.

a) Labeled dataset: As for the labeled dataset, we used
our consolidated datasets and ran the experiments for all tasks.

b) Unlabeled dataset: To obtain unlabeled images, we
crawled images from the tweets of 20 different disaster collec-
tions (as mentioned in Section III-B3). We removed duplicates
and ensured the same images are not in our labeled dataset
by matching their ids and applying duplicate filtering. The
resulting unlabeled dataset consists of 1,514,497 images.

c) Architecture: We ran our experiments using the Ef-
ficientNet (b1) architecture as it performed better than the
other models. In addition, it is one of the models used with
Noisy student experiments reported in [69]. One significant
difference between [69] and our work is that we initialize our
student model’s weight with ImageNet pre-trained weights.
In contrast, in [69], they train weights from scratch. Since
our labeled dataset is significantly smaller than the ImageNet
dataset, training from scratch substantially degrades perfor-
mance in our experiments.

d) Training details: We first trained the model using the
EfficientNet (b1) architecture on the labeled dataset (Step 1),
which is referred to as the teacher model. We then predicted
output for the unlabeled images (Step 2). After that, we trained
the student EfficientNet(b1) model by combining labeled and
pseudo-labeled images (Step 3). In this step, for the unlabeled
data, we performed different filtering and balancing. We
selected the images that have a confidence label greater than
a certain task-specific threshold. After this, we balanced the
training data so that each class has the same number of images
as the class having the lowest number of images. To do this, for

each class, we take the images having the highest confidence
scores.

For the experiments, we used a batch size of 16 for labeled
images and 48 for unlabeled images. Labeled and unlabeled
images are concatenated together to compute the average
cross-entropy loss. We used RandAugment with the number
of augmentation, N = 5, and the strength of augmentation,
M = 12. We optimized the confidence thresholds separately
for different tasks using the dev sets. The thresholds for disas-
ter types, informativeness, humanitarian, and damage severity
tasks were respectively 0.7, 0.8, 0.45, and 0.45. Similar to the
data augmentation experiments, we used a weight decay of
10−3 and kept other hyper-parameters the same as discussed
in Section IV-A.

TABLE VII: Data split for multi-task setting with incom-
plete/missing labels. DS: Disaster types, Info: Informative,
Hum: Humanitarian, DS: Damage Severity

Class labels Train Dev Test Total

Disaster Type

Earthquake 1,987 218 464 2,669
Fire 1,115 154 402 1,671
Flood 2,175 300 726 3,201
Hurricane 1,249 216 506 1,971
Landslide 917 127 287 1,331
Not disaster 3,064 564 1,463 5,091
Other disaster 489 218 870 1,577

Total 10,996 1,797 4,718 17,511

Informativeness

Informative 22,018 2,736 6,578 31,332
Not informative 18,841 2,460 7,084 28,385

Total 40,859 5,196 13,662 59,717

Humanitarian

Affected injured or dead people 537 115 353 1,005
Infrastructure and utility damage 2,397 736 2,095 5,228
Not humanitarian 4,354 886 2,964 8,204
Rescue volunteering or donation effort 1,312 268 752 2,332

Total 8,600 2,005 6,164 16,769

Damage Severity

Little or none 9,124 1,677 4,149 14,950
Mild 3,188 663 1,339 5,190
Severe 11,102 1,145 2,509 14,756

Total 23,414 3,485 7,997 34,896

F. Multitask Learning

Since the tasks share similar properties, we also consider
training the model in multitask settings with shared param-
eters. The benefits of multitask settings can be twofold: (i)
learning shared representation can help the model generalize
better and improve performance on individual tasks, and (ii)
training a single model instead of four different models will
yield a significant speed and reduce computational load during
training and inference. It is important to mention that the Crisis
Benchmark Dataset was not designed for multitask learning;
rather, it was prepared for each task separately. Hence, we
needed to prepare them for the multitask setup. Creating
multitask learning datasets from Crisis Benchmark Dataset
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TABLE VIII: Data split for multitask setting with complete
aligned labels for the different combinations of two-tasks.

Informativeness & Humanitarian

Class labels Train Dev Test Total

Informativeness

Informative 2,111 399 1,064 3,574
Not informative 2,546 397 1,443 4,386

Total 4,657 796 2,507 7,960

Humanitarian

Affected injured or dead people 426 72 166 664
Infrastructure and utility damage 410 81 210 701
Rescue volunteering or donation effort 1,274 246 688 2,208
Not humanitarian 2,547 397 1,443 4,387

Total 4,657 796 2,507 7,960

Informativeness & Damage Severity

Informativeness

Informative 14,683 1,306 2,206 18,195
Not informative 4,687 928 2,020 7,635

Total 19,370 2,234 4,226 25,830

Damage Severity

Little or none 7,085 1,094 2,369 10,548
Mild 2,665 426 679 3,770
Severe 9,620 714 1,178 11,512

Total 19,370 2,234 4,226 25,830

introduced a challenge – there is an overlap between train and
test set images among different tasks. Hence, we prepare the
datasets for the multitask setting using the following strategy:

1) We merge the test sets from different tasks into a com-
bined test set. If an image in the combined test set is
present in the train or dev set of some tasks, we remove
it from that split and add the label of the task in the test
set.

2) We merge the dev sets of the four tasks into the combined
dev set. If an image in the combined dev set is present in
the train set of some tasks, we remove it from that train
split and add the label of the task in the dev set.

3) We merge the train sets of the four tasks into the
combined train set. Since we have removed images that
overlap with the dev set and test set in the previous steps,
therefore, it guarantees that no image from the train set
will be present in the other splits.

Since all the images do not have annotation for all four
tasks, there is a discrepancy in the number of images available
for different tasks. We report the distribution of the data splits
for the multi-task setting in Table VII. Overall, there are 49353
images in the train set, 6157 images in the dev set, and
15688 images in the test set. Due to the overlap of images in
different splits for different tasks, there is also a discrepancy
between the number of images available between multi-task
and single-task settings. As an example, for the disaster types
task, there are 12846 images in the train set, 1470 images in
the dev set, and 3195 images in the test set in the single-task
setting. However, in the multi-task setting, these numbers are
respectively 10996, 1797, and 4718. As a consequence of our

TABLE IX: Data split for multi-task setting with complete
aligned labels for four-tasks: Damage Types, Informativeness,
Humanitarian, and Damage Severity.

Class labels Train Dev Test Total

Disaster Type

Earthquake 68 25 90 183
Fire 80 35 155 270
Flood 102 54 162 318
Hurricane 110 75 214 399
Landslide 8 6 24 38
Other disaster 372 198 806 1,376
Not disaster 1,563 368 1,043 2,974

Total 2,303 761 2,494 5,558

Informativeness

Informative 740 393 1,454 2,587
Not informative 1,563 368 1,040 2,971

Total 2,303 761 2,494 5,558

Humanitarian

Affected injured or dead people 85 34 164 283
Infrastructure and utility damage 398 230 764 1,392
Rescue volunteering or donation effort 26 14 53 93
Not humanitarian 1,794 483 1,513 3,790

Total 2,303 761 2,494 5,558

Damage Severity

Little or none 1,805 494 1,571 3,870
Mild 174 102 337 613
Severe 324 165 586 1075

Total 2,303 761 2,494 5,558

merging procedure, there are more images in the test and dev
sets and fewer images in the train set.

Few approaches have been proposed in the literature to
address the issue of incomplete/missing labels in multi-task
settings. They usually work by generating missing task labels
using different methods, including Bayesian networks [82],
rule-based approach [83], knowledge distillation from another
model [84]. In our experiments, we opt for a simpler alterna-
tive. Specifically, we do not compute loss for a task if its label
is missing. Since the tasks have varying training images, we
calculate the loss for each task and aggregate them in a batch.
This ensures that the loss of each task is weighted equally.
The steps are detailed in Algorithm 1.

We also experiment with images having complete aligned
labels for different tasks. We identified three such combina-
tions that have a substantial number of images in different
classes. Two of them belong to two task subsets. The first
one is informativeness and humanitarian, which has 7,960
total aligned images. The second one is informativeness and
damage severity, having 25,830 total images. Data distribution
for these two settings is reported in Table VIII. The final subset
of images having labels for all four tasks, which consists of
5558 images. Data distribution for this set is reported in Table
IX.

V. RESULTS

Our experimental results consist of different settings. Below
we discuss each of them in detail.
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Algorithm 1: Batch loss calculation in the multi-task
setting

Input: batch input // images in the batch
batch labels // list of labels for

each task
num classes // number of classes

for each task
model // outputs prediction for

all tasks are combined
Output: batch loss
num tasks = len(num classes)
prediction = model.predict(batch input)
batch loss = 0
task index = 0 // starting index for
output corresponding to this task

for i← 0 to num tasks do
prediction task = prediction[:,

task index:task index + num classes[i]]
label task = batch labels[i]
/* if there is no label for a task

it is marked as -1 in the label

*/
valid idx = nonzero(label task != -1)
task loss =
cross entropy loss(prediction task[valid idx],
label task[valid idx])

batch loss = batch loss + task loss
task index = task index + num classes[i]

A. Dataset Comparisons

In Table X, we report classification results for different tasks
and different datasets using ResNet18 network architecture.
The performance of different tasks are not equally comparable
as they have different levels of complexity (e.g., varying
number of class labels, class imbalance, etc.). For example, the
informativeness classification is a binary task, which is com-
putationally simpler than a classification task with more labels
(e.g., seven labels in disaster type). Hence, the performance
is comparatively higher for informativeness. An example of
a class imbalance issue can be seen in Table VI with the
damage severity task. The distribution of mild is relatively
small, which reflects on its and overall performance. The mild
class label is also less distinctive than other class labels, and
we noticed that classifiers often confuse this class label with
the other two class labels. Similar findings have also been
reported in [4]. For the disaster type task, the performance of
the AIDR-DT model is higher compared to the DMD model.
We observe that the DMD dataset is comparatively small, and
the model is not performing well on the consolidated dataset.
This characteristic is observed in other tasks as well. For the
damage severity task, CrisisMMD is performing worse, which
is also reflected in its dataset size, i.e., 2,493 images in the
training set, as shown in Table V. As expected, overall, for all
tasks, the models with the consolidated datasets outperform
individual datasets.

TABLE X: Results on different classification tasks using
the ResNet18 model. Trained on individual and consolidated
datasets and tested on consolidated test sets.

Dataset Acc P R F1

Disaster Type (7 classes)

AIDR-DT 0.76 0.72 0.76 0.73
DMD 0.58 0.73 0.58 0.59
Consolidated 0.79 0.78 0.79 0.79

Informativeness (2 classes)

DAD 0.80 0.80 0.80 0.80
CrisisMMD 0.79 0.79 0.79 0.79
DMD 0.80 0.80 0.80 0.80
AIDR-Info 0.75 0.79 0.75 0.73
Consolidated 0.85 0.85 0.85 0.85

Humanitarian (4 classes)

CrisisMMD 0.73 0.73 0.73 0.73
DMD 0.68 0.68 0.68 0.64
Consolidated 0.75 0.75 0.75 0.75

Damage Severity (3 classes)

DAD 0.72 0.70 0.72 0.71
CrisisMMD 0.41 0.57 0.41 0.37
DMD 0.68 0.66 0.68 0.66
Consolidated 0.75 0.73 0.75 0.74

TABLE XI: Results using different neural network models on
the consolidated dataset with four different tasks. Trained and
tested using the consolidated dataset. Comparable results are
shown in bold and best results are shown in underlined.

Architecture Acc P R F1 Acc P R F1

Disaster Type Informative

ResNet18 0.790 0.783 0.790 0.785 0.852 0.851 0.852 0.851
ResNet50 0.810 0.806 0.810 0.808 0.852 0.852 0.852 0.852
ResNet101 0.817 0.812 0.817 0.813 0.853 0.853 0.853 0.852
AlexNet 0.756 0.756 0.756 0.754 0.827 0.829 0.827 0.828
VGG16 0.800 0.796 0.800 0.798 0.859 0.858 0.859 0.858
DenseNet(121) 0.811 0.805 0.811 0.806 0.863 0.863 0.863 0.862
SqueezeNet 0.757 0.754 0.757 0.755 0.829 0.829 0.829 0.829
InceptionNet (v3) 0.562 0.609 0.562 0.528 0.663 0.723 0.663 0.593
MobileNet (v2) 0.785 0.781 0.785 0.782 0.850 0.849 0.850 0.849
EfficientNet (b1) 0.818 0.815 0.818 0.816 0.864 0.863 0.864 0.863

Humanitarian Damage Severity

ResNet18 0.754 0.747 0.754 0.749 0.751 0.734 0.751 0.736
ResNet50 0.770 0.762 0.770 0.762 0.763 0.746 0.763 0.751
ResNet101 0.769 0.763 0.769 0.765 0.760 0.736 0.760 0.737
AlexNet 0.721 0.715 0.721 0.716 0.734 0.714 0.734 0.709
VGG16 0.778 0.773 0.778 0.773 0.769 0.750 0.769 0.753
DenseNet(121) 0.765 0.756 0.765 0.755 0.755 0.734 0.755 0.739
SqueezeNet 0.730 0.717 0.730 0.719 0.733 0.707 0.733 0.708
InceptionNet (v3) 0.598 0.637 0.598 0.509 0.660 0.623 0.660 0.615
MobileNet (v2) 0.751 0.745 0.751 0.746 0.746 0.727 0.746 0.730
EfficientNet (b1) 0.767 0.764 0.767 0.765 0.766 0.754 0.766 0.758

B. Network Architecture Comparisons

In Table XI, we report results using different network
architectures on consolidated datasets for different tasks, i.e.,
trained and tested using a consolidated dataset. Across dif-
ferent tasks, EfficientNet (b1) is performing better than other
models as shown in Figure 3, except for humanitarian task, for
which VGG16 is outperforming other models. Comparatively
the second-best models are VGG16, ResNet50, ResNet101,
and DenseNet (101). From the results of different tasks, we
observe that InceptionNet (v3) is the worst-performing model.

The performance difference among different models such
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TABLE XII: Different neural network models with number
of layer, parameters and memory requirement during the
inference of a binary (Informativeness) classification task.

Model # Layer # Param (M) Memory (MB)

ResNet18 18 11.18 74.61
ResNet50 50 23.51 233.54
ResNet101 101 42.50 377.58
AlexNet 8 57.01 222.24
VGG16 16 134.28 673.87
DenseNet (121) 121 6.96 174.2
SqueezeNet 18 0.74 47.99
InceptionNet (v3) 42 24.35 206.01
MobileNet (v2) 20 2.23 8.49
EfficientNet (b1) 25 7.79 177.82
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Fig. 3: Average F1 scores from all four tasks with different
network architectures show that on average EfficientNet (b1)
performs better than other architectures.

as EfficientNet (b1), VGG16, ResNet50, ResNet101, and
DenseNet (101) are low, hence, we have done statistical test
to understand whether such small differences are significant.
We used McNemar’s test for binary classification task, (i.e.,
informativeness) and Bowker’s test for other multiclass clas-
sification tasks. More details of this test can be found in [85].
We have done such tests between two models to see a pair-
wise difference. In Figure 4, we report the results of significant
tests. The value in the cell represent the P -value and the light
yellow color represent they are statistically significant with
P < 0.05. From the Figure 4, we see that for disaster type
task the P -value is higher than 0.05 in comparison between Ef-
ficientNet (b1) vs. ResNet50, ResNet101 and DenseNet (121),
which clearly reflects among the results reported in Table XI.
Similarly the difference is very low between EfficientNet (b1)
vs. VGG16 and DenseNet (121). For humanitarian and damage
severity tasks, we observed similar behaviors. By analyzing
all four tasks it appears VGG16 is the second best performing
model.

In Table XII, we also report different neural network
models with their number of layers, parameters, and memory
consumption during the inference of informativeness task.
There is usually a trade-off between the performance and
computational complexity of different deep neural networks.
In terms of memory consumption and the number of parame-
ters, VGG16 is more expensive than others. Among different

ResNet models, ResNet18 is a reasonable choice, given that
its computational complexity is significantly less than other
ResNet models. Based on the performance and computational
complexity, we can conclude that EfficientNet can be the best
option for real-time applications. We computed throughput for
EfficientNet on a Tesla T4 GPU using a batch size of 16, and it
can process ∼191 images per second in a single task setting as
opposed to ∼743 in a multitask setting. We also computed the
same on the CPU with a batch size of 1 in a single thread. It
can process ∼1.6 and ∼6 images in a single task and multitask
setting, respectively.

C. Data Augmentation

To reduce the overfitting and to have more generalized
models, we used data augmentation and weight decay. In Table
XIII, we report the results for all tasks and using all network
architectures. The column Diff. reports the difference between
the results presented in Table XI where no RandAugment
or weight decay has been applied. The improved results are
highlighted with light blue color for all tasks. Out of 40
experiments (10 network architectures across 4 tasks), for
26 cases, the augmentation with weight decay improved the
performances.

On the improved cases, we also computed a statistical
significance test between no RandAugment and RandAugment
with weight decay models. We found that the improvements
for the models with InceptionNet (v3) are statistically signif-
icant in all tasks. Only the improved performance with Effi-
cientNet (b1) for damage severity task is statistically signifi-
cant, and for other tasks, they are not statistically significant.
We investigated training and validation losses over the number
of epochs. In Figure 5 and 6, we report training, validation
losses and accuracies for EfficientNet (b1) model for Informa-
tiveness and Humanitarian tasks, respectively. From the figures
5a and 6a, we clearly see that models are overfitting, whereas
Figures 5b and 6b show that models are more generalized.
These findings demonstrate the benefits of augmentation and
weight decay.

D. Semi-supervised Learning

In Table XIV, we present the results of the Noisy student-
based self-training approach without/with RandAugment re-
sults. We have an ∼ 1% improvement for the Informativeness
task. For the Humanitarian task, the performance is similar to
RandAugment. For the Damage severity task, the performance
of Noisy student is the same as without RandAugment but
lower than RandAugment.

We postulate the following possible reasons for the lack of
improvements in semi-supervised learning experiments:

1) Semi-supervised learning usually performs better when
trained from scratch instead of fine-tuning from a pre-
trained model. This phenomenon is explored in [86]
where the authors reported the performance gained from
semi-supervised learning methods are usually smaller
when trained from a pretrained model. We could not train
the student model from scratch as our labeled datasets are
small, and it degrades performance even more.
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Fig. 4: Statistical significant test among the different network architectures for Disaster Type, Informativeness, Humanitarian
and Damage Severity tasks. P -values are presented in cells. Light yellow color represent they are statistically significant with
p < 0.05

2) We had to use a much smaller labeled batch size of 16
compared to those used in [69] (512 or higher) due to
GPU constraints. Having a larger labeled batch size and,
consequently, more unlabeled images in each batch may
yield a better result.

E. Multitask Learning

Since the Crisis Benchmark Dataset has not been designed
to address the multitask learning, we needed to re-split it as
discussed in Section IV-F. This resulted two different settings:
(i) incomplete/missing labels, and (ii) complete aligned la-
bels. The incomplete/missing labels in multitask learning is a

challenging problem, which we addressed using masking, i.e.,
for an unlabeled output, we are not computing loss for that
particular task. In Table XV, we report the results of multitask
learning with missing labels where we address all tasks. We
also investigated different task combinations where all labels
are present. In Table XVI, we report the results of different
tasks combinations where they have complete aligned labels.
For different task combinations, performances differ due to
their data sizes, label distribution, and task settings. The results
with multitask learning are not directly comparable with our
single task setup. However, they can serve as a baseline for
future studies.
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TABLE XIII: Results with data augmentation and weight decay using different neural network models on the consolidated
dataset for all four tasks. Diff. represents the difference F1 score without RandAugment results presented in Table XI. *
represents statistically significant (with P < 0.05) compared to the without RandAugment results.

Architecture Acc P R F1 Diff. Acc P R F1 Diff.

Disaster Type Informative

ResNet18 0.812 0.807 0.812 0.809 0.024 0.848 0.847 0.848 0.847 -0.004
ResNet50 0.817 0.81 0.817 0.812 0.004 0.863 0.863 0.863 0.862 0.010
ResNet101 0.819 0.815 0.819 0.816 0.003 0.857 0.858 0.857 0.858 0.006
AlexNet 0.755 0.753 0.755 0.753 -0.001 0.827 0.826 0.827 0.825 -0.003
VGG16 0.803 0.797 0.803 0.798 0.000 0.855 0.855 0.855 0.855 -0.003
DenseNet (121) 0.817 0.811 0.817 0.813 0.007 0.858 0.858 0.858 0.857 -0.005
SqueezeNet 0.726 0.719 0.726 0.717 -0.038 0.821 0.820 0.821 0.820 -0.009
InceptionNet (v3) 0.808 0.801 0.808 *0.802 0.254 0.860 0.859 0.860 *0.859 0.331
MobileNet (v2) 0.793 0.788 0.793 0.789 0.007 0.854 0.853 0.854 0.853 0.004
EfficientNet (b1) 0.838 0.834 0.838 0.835 0.019 0.869 0.868 0.869 0.868 0.005

Humanitarian Damage Severity

ResNet18 0.745 0.738 0.745 0.741 -0.008 0.757 0.736 0.757 0.739 0.003
ResNet50 0.774 0.769 0.774 0.768 0.006 0.763 0.745 0.763 0.749 -0.002
ResNet101 0.774 0.778 0.774 0.775 0.010. 0.766 0.753 0.766 0.757 0.020
AlexNet 0.718 0.709 0.718 0.709 -0.007 0.728 0.712 0.728 0.713 0.004
VGG16 0.772 0.766 0.772 0.767 -0.006 0.767 0.748 0.767 0.752 -0.001
DenseNet (121) 0.759 0.756 0.759 0.755 0.000 0.760 0.741 0.760 0.747 0.008
SqueezeNet 0.720 0.713 0.720 0.712 -0.007 0.729 0.708 0.729 0.702 -0.006
InceptionNet (v3) 0.762 0.753 0.762 *0.754 0.256 0.758 0.735 0.758 *0.739 0.115
MobileNet (v2) 0.759 0.749 0.759 0.751 0.005 0.758 0.737 0.758 0.738 0.008
EfficientNet (b1) 0.785 0.784 0.785 0.784 0.019 0.777 0.762 0.777 *0.765 0.007

TABLE XIV: Results with Noisy student self-training ap-
proach using Efficient (b1) neural network models on the
consolidated datasets for all four tasks.

Experiment Acc P R F1

Disaster Type

Without RandAugment 0.818 0.815 0.818 0.816
RandAugment 0.838 0.834 0.838 0.835
Noisy Student 0.793 0.812 0.793 0.794

Informativeness

Without RandAugment 0.864 0.863 0.864 0.863
RandAugment 0.869 0.868 0.869 0.868
Noisy Student 0.878 0.878 0.878 0.876

Humanitarian

Without RandAugment 0.767 0.764 0.767 0.765
RandAugment 0.785 0.784 0.785 0.784
Noisy Student 0.783 0.786 0.783 0.783

Damage Severity

Without RandAugment 0.766 0.754 0.766 0.758
RandAugment 0.777 0.762 0.777 0.765
Noisy Student 0.773 0.753 0.773 0.759

TABLE XV: Results of multitask learning with incom-
plete/missing labels.

Task Acc P R F1

Disaster type 0.647 0.657 0.647 0.637
Informativeness 0.727 0.735 0.727 0.726
Humanitarian 0.775 0.772 0.775 0.773
Damage severity 0.744 0.732 0.744 0.737

F. Visual Explanation using Grad-CAM

We explore how the neural networks arrive at their deci-
sion by utilizing Gradient-weighted Class Activation Mapping

TABLE XVI: Results of multitask learning with different tasks
combinations and complete labels. DT: Disaster Type, Info:
Informative, Hum: Humanitarian, DS: Damage Severity.

Task Acc P R F1

Two tasks: Info and DS

Informative 0.855 0.856 0.855 0.855
Damage Severity 0.806 0.799 0.806 0.802

Two tasks: Info and Hum

Informative 0.817 0.816 0.817 0.816
Humanitarian 0.761 0.756 0.761 0.758

Four tasks: DT, Info, Hum and DS

Disaster Type 0.781 0.768 0.781 0.772
Informative 0.920 0.921 0.920 0.920
Humanitarian 0.827 0.807 0.827 0.816
Damage Severity 0.772 0.750 0.772 0.759

(Grad-CAM) [9]. Grad-CAM uses the gradient of a target class
flowing into the final convolution layer to produce a local-
ization map highlighting the important regions in the image
for that specific class. We report results for two candidate
networks, i.e., VGG16 and EfficientNet, on two tasks, i.e.,
informativeness and disaster type. We use the models trained
using RandAugment for this experiment.

In Figure 7, we show the activation map for the predicted
class for some images from the informativeness test set. From
these images, it is apparent that EfficientNet performs better
for localizing important regions in the image for the class
of interest. VGG16 tends to depend on smaller regions for
decision-making. The last row shows an image where VGG16
misclassified an informative image as not informative.

We show the activation map for some images from the test
set of the disaster type task in Figure 8. Here, the difference
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(a) Without RandAugment.

(b) With RandAugment and weight decay.

Fig. 5: Training/validation losses and accuracies without and
with augmentation for Informativeness task.

in localization quality between the two models is even more
pronounced. The activation maps from VGG are difficult
to interpret in the first and third images, even though the
model classifies them correctly. The second image shows that
VGG may focus on the smoke regions for classifying fire
images. This explains why it identifies the last image as fire,
misclassifying the clouds as smoke.

Overall, these results suggest that EfficientNet does not only
outperform other models in the numeric measures but it also
produces activation maps that are easier to interpret.

VI. DISCUSSION AND FUTURE WORK

A. Our Findings

Real-time event detection is an important problem from
social media content. Our proposed pipeline and models are
suitable to deploy them in different applications. The proposed
models can also be used independently. For example, disaster
type model can be used to monitor disaster events.

Our experiments were based on the research questions
discussed in Section I below we report our findings based
on them.

(a) Without RandAugment.

(b) With RandAugment and weight decay.

Fig. 6: Training/validation losses and accuracies without and
with augmentation for Humanitarian task.

RQ1: Our investigation to dataset comparison suggests that
data consolidation helps, which answers our first research
question.

RQ2: We also explore several deep learning models, which
vary with performance and complexities. Among them, Ef-
ficientNet (b1) appears to be a reasonable option. Note that
EfficientNet has a series of network architectures (b0-b7) and
for this study, we only reported results with EfficientNet (b1).
We aim to further explore other architectures. A small and
low latency model is desired to deploy mobile and handheld
embedded computer vision applications. The development
of MobileNet [66] sheds light towards that direction. Our
experimental results suggest that it is computationally simpler
and provides a reasonable accuracy, only 2-3% lower than
the best models for different tasks. These findings answer out
second research question.

RQ3: We observe that strong data augmentation can improve
performance, although this is not consistent across different
tasks and models. Semi-supervised learning does not usually
yield performance when trained using pretrained models and
can sometimes even degrade it.

RQ4: Multi-task learning can be an ideal solution for the
real-time system as it can potentially provide speed-ups of
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Fig. 7: Grad-CAM visualization of some images for the informativeness task.

multiple factors during inference. However, some tasks may
perform worse than their single task settings in the presence of
incomplete labels. Having aligned complete labels for different
tasks can mitigate this issue.

B. Comparison with the State of the Art

We compared our results with recent and related state-of-
the-art results, reported in Table XVII. However, it is not
possible to have an end-to-end comparison for a few possible
reasons: (i) different datasets and sizes – see the second
and third columns in Table XVII, (ii) different data splits

(train/dev/test vs. Cross Validation (CV) fold) even using
same dataset – see the Data Split column in the same Table,
(iii) different evaluation measures such as weighted P/R/F1-
measure (first two rows) [39] vs. accuracy (third row) [5] vs.
CV fold (fourth to sixth rows – unspecified in [31] whether
measures are macro, micro or weighted).

Even if they are not exactly comparable, we observe that on
informativeness and humanitarian tasks, previously reported
results (weighted F1) are 0.832 and 0.763, respectively, using
the CrisisMMD dataset [39]. The authors in [5] reported a test
accuracy of 0.840±0.0172 for six disaster types tasks using the
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Fig. 8: Grad-CAM visualization of some images for the disaster type task.

DMD dataset with a five-fold cross-validation run. The study
in [31] report an F1 of 0.820 for informativeness, 0.920 for in-
frastructure damage, and 0.940 for damage severity. In another
study, using the CrisisMMD dataset, authors report weighted-
F1 of 0.812 and 0.870 for informativeness and humanitarian
tasks, respectively [32]. They used a small subset of the whole
CrisisMMD dataset in their study. From the Table XVII we
observe that the F1 for informativeness task ranges from 0.812
to 0.832 across studies, for humanitarian task it varies from
0.763 to 0.870, and for damage severity it varies from 0.661
to 0.940. Compared to them our best results (weighted F1)

for disaster types, informativeness, humanitarian and damage
severity are 0.835, 0.876, 0.784, and 0.765, respectively, on
the consolidated single task dataset.

C. Future Work

As for future work we foresee several interesting research
avenues. (i) Further exploration of semi-supervised learning
to leverage a large amount of unlabeled social media data
and address the limitations highlighted in Section V-D. We
believe addressing such limitations can help to advance state of
the art. (ii) In multitask setup, one possible research direction
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TABLE XVII: Recent relevant results reported in the literature. # C: Number of class labels, Cls: Classification task, B:
Binary, M: Multiclass, Info: Informativeness, Hum: Humanitarian, Event: Disaster event types, Infra.: Infrastructural damage,
Severity: Severity Assessment. We converted some numbers from percentage (as originally reported) to decimal for an easier
comparison.

Ref. Dataset # image # C Cls. Task Models Data Split Acc P R F1

[39] CrisisMMD 12,708 2 B Info VGG16 Train/dev/test 0.833 0.831 0.833 0.832
[39] CrisisMMD 8,079 5 M Hum VGG16 Train/dev/test 0.768 0.764 0.768 0.763
[5] DMD 5879 6 M Event InceptionNet (v4) 4 folds CV 0.840 - - -
[31] CrisisMMD 18,126 2 B Info InceptionNet (v4) 5 folds CV - 0.820 0.820 0.820
[31] CrisisMMD 18,126 2 B Infra. InceptionNet (v4) 5 folds CV - 0.920 0.920 0.920
[31] CrisisMMD 18,126 3 B Severity InceptionNet (v4) 5 folds CV - 0.950 0.940 0.940
[32] CrisisMMD 11,250 2 B Info DenseNet Train/dev/test 0.816 - - 0.812
[32] CrisisMMD 3,359 5 B Hum DenseNet Train/dev/test 0.834 - - 0.870
[32] CrisisMMD 3,288 3 B Severity DenseNet Train/dev/test 0.629 - - 0.661

is to address the problem of incomplete/missing labels, and
the other is manually labeling Crisis Benchmark Dataset for
incomplete labels for all tasks. Both approaches will give the
community grounds to explore multitask learning for real-time
social media image classification.

VII. APPLICATIONS

There are many application scenarios of the proposed mod-
els, however, in this section we discuss the ones that are highly
relevant for crisis responders in humanitarian organizations.
Information for Situational Awareness: The information
posted on social media during natural or human-induced disas-
ters varies greatly. Studies have revealed that a big proportion
of social media data consists of irrelevant information that is
not useful for any kind of relief operations. For the decision-
making process, humanitarian organizations are interested to
have concise information about the ongoing situation to be
aware of the event. The proposed models can help in filtering
and reducing irrelevant content and provide a concrete sum-
mary.
Actionable Information: Depending on their roles and man-
date, humanitarian organizations differ in terms of their infor-
mation needs. Several rapid response and relief agencies look
for fine-grained information about specific incidents, which
is also actionable. Such information types include reports of
injured or dead people, critical infrastructure damage (e.g., a
collapsed bridge), and rescue demand among others. Our study
focused on coarse (i.e., binary) to fine-grained labels while
also addressed four different but related tasks. Applications
can be developed on top of our models, which can provide
critical humanitarian information needs in crisis situations.
Real-time Crisis Event Detection: The proposed models (i.e.,
disaster type) can be deployed to continuously monitor social
media and detect emergent events (e.g., fire, flood) around the
world.

VIII. CONCLUSIONS

The imagery and textual content available on social me-
dia have been used by humanitarian organizations in times
of disaster events. There has been limited work for disas-
ter response image classification tasks compared to text. In
this study, we posed four research questions and performed
extensive experiments on four tasks such as disaster type,

informativeness, humanitarian, and damage severity to answer
those questions. Our experimental results on individual and
consolidated datasets suggest that data consolidation helps.
We investigated four tasks using various state-of-the-art neural
network architectures and reported the best-performing mod-
els. The findings on data augmentation suggest that a more
generalized model can be obtained with such approaches.
Our investigation on semi-supervised and multitask learning
suggests new research directions for the community. We also
provide some insights of activation maps to demonstrate what
class-specific information is learned by the network.
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