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Abstract
Deep learningmodels are designedbased on the i.i.d. assumption; consequently, they experience a significant performance drop
due to the distribution shifts when deployed in real environments. Domain Generalisation (DG) aims to bridge the distribution
shift between the source and target domains by improving the generalisability of the model to Out-Of-Distribution (OOD)
data. This challenge is prominent in satellite imagery classification due to the scarcity of data from underrepresented regions
such as Africa and Oceania. In this paper, we address the limitations of existing datasets in capturing distribution shifts caused
by geospatial differences between geographic regions by constructing a new, large-scale dataset called Domain Shift across
Geographic Regions (DSGR). This dataset aims to help researchers better understand the impact of distribution shifts on
satellite imagery classification. Furthermore, we perform rigorous experiments on DSGR to investigate and benchmark the
robustness of existing DG techniques under single- and multi-source domain settings and the role of foundation models in
enhancing the DG techniques. Our evaluations reveal that recent DG techniques have a comparable, yet weak, performance on
DSGR. However, when combined with a foundation model like CLIP, ERM (introduced in 1999) achieves highly competitive
results, surpassing even recent state-of-the-art DG solutions in enhancing the generalisability of deep learning models across
different geographic regions. Our dataset and code are available at https://github.com/RWGAI/DSGR.

Keywords Domain Generalisation · Distribution shift · Out-of-Distribution Generalisation · Domain Shift · Land Use
Classification · Remote Sensing

1 Introduction

Deep learning (DL) models are extensively used in remote
sensing applications such as object detection in satel-
lite imagery (Xu et al., 2022b; Peng et al., 2022), land
cover (Kalita et al., 2021; Luo & Ji, 2022) and land-use
classification (Voreiter et al., 2020; Zheng et al., 2020; Xu
et al., 2022a), road extraction (Lu et al., 2022), flood map-
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ping (Drakonakis et al., 2022; Sadiq et al., 2022), semantic
segmentation (Tasar et al., 2021; Wu et al., 2020), and others
(Suel et al., 2021; Li et al., 2023a; Nguyen et al., 2024; Pott et
al., 2021). One issue that is often neglected is that DL mod-
els are designed based on the i.i.d. assumption.Consequently,
they tend to fail in bridging the domain shift gap experienced
when the samples at test time come from a target domain that
has a different underlying distribution than that of the source
domain(s) seen during training. This limitation deteriorates
their ability to generalise from the In-Distribution (ID) data
to new and unseen Out-Of-Distribution (OOD) data, leading
to significant performance degradation whenever the model
is faced with OOD data.

To address this issue, Domain Generalisation (DG) tech-
niques1 aim to bridge the gap by improving the generalisabil-
ity of modern DL models to OOD data while being strictly
limited to the source domain data during training (Zhou et
al., 2022a; Wang et al., 2022; Gulrajani & Lopez-Paz, 2021;

1 More details about DG techniques are discussed in Section 2.1.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-025-02518-z&domain=pdf
http://orcid.org/0000-0002-8762-7804
http://orcid.org/0000-0002-0549-3882
http://orcid.org/0000-0003-3918-3230
https://github.com/RWGAI/DSGR


International Journal of Computer Vision

Robey et al., 2021; Ding et al., 2022; Arjovsky et al., 2019;
Rame et al., 2022; Harary et al., 2022; Sun & Saenko, 2016;
Lin et al., 2021; Shi et al., 2022; Eastwood et al., 2022; Li et
al., 2023b; Arpit et al., 2022). Their efficacy is then typically
evaluated on a number of standard DG benchmark datasets
such as RotatedMNIST (Ghifary et al., 2015), PACS (Li et
al., 2017), DomainNet (Peng et al., 2019), VLCS (Fang et al.,
2013), and OfficeHome (Venkateswara et al., 2017), among
others. However, these DG datasets do not reflect the chal-
lenging and complex environments in which DL models are
deployed for earth observation tasks such as land-use classi-
fication (Voreiter et al., 2020; Zheng et al., 2020; Xu et al.,
2022a).

While there are a few recent remote sensing datasets that
attempt to reflect the domain shift gap, these datasets have
narrow application scopes (e.g., Auto Arborist (Beery et
al., 2022) and PovertyMap-WILDS (Koh et al., 2021)) and
limited geographical coverage (e.g., GeoNet (Kalluri et al.,
2023)). In particular, when it comes to the task of land-use
classification using satellite imagery, WILDS (Koh et al.,
2021) took a step in this direction by introducing FMoW-
WILDS, a DG dataset designed to study temporal domain
shifts in this task, where the domains were defined in terms
of years. While understanding the effects of the temporal
domain shift is vital in such a task, less attention has been
devoted to introducing a DG dataset that contributes towards
investigating the performance of DL models in handling yet
another crucial domain shift, known as the spatial domain
shift (i.e., covariate shift) at a global scale. Such a shift arises
from differences in the appearance of built structures and
land cover due to factors like natural landscape, architec-
tural design, financial and economic development, social and
cultural characteristics, human settlement patterns anddemo-
graphics, etc. Huang et al. (2020); Ma et al. (2024).

One could argue that the temporal domain shift follows
a natural order, that is the time distance between domains,
would provide insight on the effect of the shift in the data dis-
tribution. For example: considering that Years are domains,
the closer the years between two domains representing a
building, the chances that the two images would be simi-
lar is higher. Whereas, a higher shift would be observed for
the images of two buildings 30 years apart. This is due to
the continuous space nature of the time based shift. How-
ever, this is not true for spatial domain shifts as there is no
order between the data (similar to the concept of categorical
split) which makes it a more challenging problem to tackle.
The difference between temporal and spatial domain shift in
satellite imagery, represented through samples of the same
class, is illustrated in Figure 1 below.

To address the shortcomings of the aforementioned
datasets, we propose Domain Shift across Geographic
Regions (DSGR), a novelDGdataset to explicitly portray the
effects of spatial domain shift (i.e., covariate shift) on satellite

Fig. 1 Comparison between spatial and temporal domain shifts

imagery classification at a global scale and measures the per-
formance of modern DG algorithms on data gathered from
different regions. With the goal of creating a DG dataset that
reflects different real-life scenarios,we follow the geographic
region categorisation defined by the Population Division of
the Department of Economic and Social Affairs in the United
Nations (Nations, 2022). Therefore, DSGR consists of six
domains: Asia, Africa, Oceania, Europe, Latin America and
the Caribbean, and Northern America.

A robust land-use classification model under domain shift
is crucial in real-life applications, where amodel is trained on
data from a specific geographic region and is then deployed
and expected to maintain its high performance on a new geo-
graphic region. Such applications range from assessing the
environmental impacts of land-use and the socioeconomic
development of a region to land resource management, etc.
Xu et al. (2020). Figure 2 illustrates the phenomenon of spa-
tial domain shift across geographic regions in the land-use
classification task. Since each geographic region is charac-
terised by unique geospatial features, a model trained on
the source domains, e.g., Europe and Latin America and the
Caribbean, to classify whether a building belongs to Single-
Unit Residential orOil andGas Facility class will experience
a significant degradation in performance when presented
with satellite images from the target domain, e.g., Asia. This
is due to the domain shift gap introduced by the unique-
ness of features of the geographic regions used as source
domains versus the features of the target geographic region.
More specifically, the land cover types, which can be seen
in the samples of both classes, the architectural differences
when it comes to the Oil and Gas Facility class or the den-
sity of units in the Single-Unit Residential class. This issue
of spatial domain shift across geographic regions is crucial
as it impedes the large-scale deployment of DL models in
practice.

In this work, we designed DSGR to address the underex-
plored state of DG benchmark datasets with spatial domain
shift across geographies worldwide for land-use classifica-
tion, providing a solid benchmark dataset to aid the research
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Fig. 2 Domain shift in satellite imagery with domains defined as geo-
graphic regions: (left) Europe, (centre) LatinAmerica and theCaribbean
and (right) Asia. It can be observed that the buildings and the geograph-
ical landscapes are different across the different domains. A classifier

trained on source domains under the i.i.d. assumption (top-left) will
likely misclassify samples from the OOD target domain (top-right).
The aim of DG is to produce a classifier that generalises to OOD data
while maintaining its performance on ID data (bottom-centre)

community in assessing the DG techniques designed for
such a task and underscoring the need for advanced datasets
to evaluate the performance of DL-based satellite imagery
classification under such a domain shift. Furthermore, using
DSGR,we investigate and provide new insights into theOOD
performance of several modern DG algorithms under differ-
ent source–target domain settings. Moreover, with the rise
and success of foundation models in many applications, we
show that their usage as backbone models in SOTADG tech-
niques can further enhance the generalisability of the models
to OOD data.

Our contributions are summarised as follows:

• We introduce DSGR, a novel, realistic and challenging
DG dataset for land-use classification in satellite imagery
(Section 3).

• We provide insights into the role of single-source ver-
sus multi-source training in addressing DG for spatial
domains in satellite imagery,wherewe deduce thatmulti-
source training results in a higher generalisability of DL
models (Sections 5.3 and 5.4).

• We facilitate the community with an in-depth analysis of
the performance of the SOTA DG algorithms on DSGR.
We observe that their performance varies slightly with
the experimental setup. However, these variations are
insignificant (Sections 5.3 and 5.4).

• We examine the influence of foundation models on the
overall performance of the SOTA DG algorithms, using
twoversions ofCLIP, eachwith a different backbone size.
Our experiments reveal that the classical Empirical Risk
Minimisation (ERM) method, when paired with CLIP,
outperforms other SOTA DG methods (Section 5.5).

• We investigate the impact and limitations of a popu-
lar OOD-aware training scheme, using a left-out source
domain as an OOD validation set during training, on
the SOTA DG models. We conclude that such scheme
falls short of improving the generalisability of DL mod-
els under spatial domain shift (Section 5.6).

The rest of the paper is organised as follows: Section 2
expands the discussion to provide an in-depth literature
review and highlight the most relevant works to this paper.
Section 3 presents DSGR, the satellite imagery DG dataset
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for land-use classification introduced in this paper. Then,
we lay the foundation to our experiments in Section 4 and
present our experimental results, analyses and performance
evaluations in Section 5. In Section 6, we provide a thor-
ough discussion, highlighting the implications of DSGR in
real-life applications, limitations of this work and our future
directions. Finally, Section 7 provides the conclusion to this
paper.

2 RelatedWork

This work is related to the existing work in domain gen-
eralisation in terms of benchmarks and analyses of domain
generalisation techniques (Section 2.1) and datasets explic-
itly designed to analyse the performance of those techniques
under domain shifts, including the recent DG remote sensing
datasets (Section 2.2).

2.1 Domain Generalisation Techniques

The last few years have witnessed a surge of interest in
developing DG techniques to address the performance hit
experienced by DL models when faced with OOD data. One
of the most intuitive and preferred techniques is increasing
the size and the diversity of the source dataset with the aim
of covering a larger distribution that might be close to that
of the target in the latent space. This is typically achieved
using a range of data augmentation techniques (Volpi &
Murino, 2019; Robey et al., 2021; Zhang et al., 2018). How-
ever, a major shortcoming of data augmentation is that in
real-world applications, the target data and its distribution
are unknown during the training phase. Therefore, adding
data from additional source domains does not guarantee that
such an addition will reflect positively, if any, on the gener-
alisability of DL models.

In a recent and popular study among the DG commu-
nity, known as DomainBed (Gulrajani & Lopez-Paz, 2021),
the authors shifted their focus towards optimisation of clas-
sical algorithms for DG. Their work suggests that using
the decades-old Empirical Risk Minimisation (ERM) algo-
rithm (Vapnik, 1999), where themodel is trained tominimise
the average training loss, with rigorous tuning is sufficient to
boost the model’s performance such that it outperforms the
SOTA DG algorithms when tested on OOD datasets.

Another vein of studies focuses on designing learning
strategies explicitly for DG such as ensemble techniques (Li
et al., 2023b; Arpit et al., 2022) and regularisation-based
methods (Shi et al., 2022; Rame et al., 2022; Eastwood et
al., 2022; Arjovsky et al., 2019; Sagawa et al., 2019). As
an example of a regularisation-based method, the Invariant
Risk Minimisation (IRM) technique (Arjovsky et al., 2019)
extends on ERM by adding a penalty to its objective function

in order to enforce the notion of invariance across differ-
ent source domains. This is achieved through penalising the
model on feature distributions that have a different optimal
linear classifier for each domain. This has been shown to
increase the overall generalisability of the model on various
DG datasets.

While not designed explicitly to measure the domain shift
between different spatial domains, group Distributionally
RobustOptimisation (groupDRO) (Sagawa et al., 2019) aims
to improve the generalisability of the predictive models by
optimising the worst predictive loss of predefined distinct
groups through distributionally robust optimisation. Due to
the high-level of similarity between the notion of groups and
domains, it has been used in recent literature as a DG tech-
nique.

Feature disentanglement (Lin et al., 2021; Bui et al., 2021)
and learning domain-invariant representations (Ding et al.,
2022; Harary et al., 2022; Sun & Saenko, 2016) are DG tech-
niques that gained attention in the community recently. For
instance, the authors introduced LRDG (Ding et al., 2022) to
eliminate domain-specific features where they trained clas-
sifiers to learn features from different domains, then used an
encoder-decoder model to remove these features. Similarly,
building on the success ofERM,DeepCorrelationAlignment
(Deep CORAL) (Sun & Saenko, 2016) adds a penalty to its
objective function, defined by differences in the means and
covariances of feature distributions across domains, aiming
to align these distributions. AlthoughDeepCORALhas been
originally used for Domain Adaptation (DA), its utilization
has been extended to train DG models as well.

With the rise of foundation models and their effectiveness
in generalisation, recent studies (Shu et al., 2023; Singha et
al., 2024) attempt to address the domain shift gap by incor-
porating foundation models such as CLIP (Radford et al.,
2021) as backbone architectures to SOTADGalgorithms. For
example, CLIPood (Shu et al., 2023) describes an architec-
ture coupled with CLIP through a new training objective and
optimisation strategy. Their proposed technique is designed
to maintain the strength of the pretrained parameters and
leverage the new information obtained through fine-tuning
the model on a new task. The authors have shown that
CLIPood outperforms ERM and other SOTA DG algorithms
on the traditional DG benchmark datasets such as those dis-
cussed in Section 2.2. We refer the reader to recent surveys
(Zhou et al., 2022a; Wang et al., 2022; Shen et al., 2021) for
further introduction and in-depth discussion about the SOTA
DG methods.

In this work, we investigate the performance of five SOTA
DGtechniques, namelyERM(Vapnik, 1999), IRM(Arjovsky
et al., 2019), Deep CORAL (Sun & Saenko, 2016), group
DRO(Sagawa et al., 2019), andCLIPood (Shu et al., 2023) on
our dataset, DSGR. We provide more details on the selected
algorithms in Section 4.2.
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2.2 Domain Generalisation Datasets

2.2.1 Traditional DG Benchmark Datasets

Some of the most widely used benchmark datasets for DG
are relatively simple datasets such as PACS (Li et al., 2017),
OfficeHome (Venkateswara et al., 2017), DomainNet (Peng
et al., 2019), VLCS (Fang et al., 2013) or synthetic variations
of classical datasets such as RotatedMNIST (Ghifary et al.,
2015) and ColoredMNIST (Arjovsky et al., 2019). While
these datasets are successful in demonstrating the phenom-
ena of domain shift, they are considered not realistic enough
(e.g., in Koh et al. (2021); Beery et al. (2022)) to represent
complex, real-world scenarios (Zhang et al., 2023). This is
due to the fact that they contain homogeneous domain shifts,
where the shifts between source-to-source and source-to-
target domains are highly correlated and predictable (Zhou et
al., 2022a). For example, in PACS the shift is due to the style
changes. Whereas, in a real-world scenario, the source-to-
target shift is said to be unpredictable, which is also known
as a heterogeneous domain shift (Zhou et al., 2022a). Fur-
thermore, unlike the aforementioned datasets, an inherent
difficulty of a real-world application such as land-use classi-
fication using satellite imagery is that the context are densely
gathered around an object within an image. Hence, this high-
lights the need for datasets that reflect such a complex and
heterogeneous domain shift in real-world applications, espe-
cially in the area of satellite imagery.

2.2.2 Realistic DG Benchmark Datasets

Recently, WILDS (Koh et al., 2021) was introduced as
a suite of tools to study domain generalisation through
datasets, with domain and/or subpopulation shifts in real-
life applications, and some DG algorithms to overcome
these shifts. For example, Camelyon17-WILDS is a med-
ical imagery dataset where each hospital is considered as
a domain. GlobalWheat-WILDS is proposed to study the
domain shift in plant characteristics from close-up photos
of plant fields captured in twelve countries (i.e., domains).
Similarly, Auto Arborist (Beery et al., 2022) is a drone and
street-view imagery dataset that aims to address geographical
domain shift in urban forest monitoring application, cover-
ing 23 cities in the US and Canada. Another recent dataset
GeoNet (Kalluri et al., 2023) comes close to the intuition
behindDSGR, inwhich the authors proposed several datasets
to study multiple elements, one of which is used for evaluat-
ing SOTA unsupervised DA methods across two different
regions, namely, Asia and USA. Likewise, in the remote
sensing field, PovertyMap-WILDS (Koh et al., 2021) was
designed for DA to regress the poverty levels in different
African countries.

When it comes to domain shifts in land-use classifica-
tion, FMoW-WILDS (Koh et al., 2021) was introduced as
a DG dataset to investigate the performance of DG tech-
niques under temporal domain shift across different domains
defined in terms of years. Their study has shown that the per-
formance of the DG techniques was negatively affected by
the temporal domain shift. Although much has been learned
about temporal domain shift in the recent literature (Yao et
al., 2022a; Xie et al., 2023; Yao et al., 2022b), understand-
ing the effects of shift across space on a global scale for
this task remains unexplored. Therefore, as of the time of
writing this paper, our proposed DSGR dataset is a novel
land-use classification DG benchmark for remote sensing
applications that is focused on the spatial domain shift with a
global coverage. Table 1 highlights the uniqueness of DSGR
in comparison to the standardDGbenchmark datasets, where
it can be observed that for land-use classification, DSGR is
the only DG dataset that provides the definition of domains
in terms of geographic regions across the globe.

3 Proposed DSGR Dataset

We focus on the problem of domain shift with a set of distinct
but similar domains for land-use classification application.
In particular, we focus on the spatial domain shift, where we
associate domains with geographic regions. To ensure that
DSGR reflects scenarios in real-life applications and can be
used to assess the robustness of models to domain shift prior
to their deployment, as mentioned previously, we use the
geographic region categorisation defined by the Population
Division of the United Nations Department of Economic and
Social Affairs in the United Nations (Nations, 2022). Hence,
DSGR consists of the six geographic regions highlighted in
Figure 3: Asia (AS), Africa (AF), Oceania (OC), Europe
(EU), Latin America and the Caribbean (LAC), and North-
ern America (NA). The main goal behind such design is that,
in a real-life environment, a DL model would be trained on
a limited dataset acquired from a geographic region or a set
of geographic regions but would be deployed and expected
to perform well worldwide, including previously unseen ter-
ritories.

3.1 Data Preprocessing

Due to the scarcity of satellite imagery with large global cov-
erage coupledwith the high cost of obtaining them,we utilise
the raw satellite imagery released publicly in fMoW (Christie
et al., 2018). The raw images of fMoWwere acquired tempo-
rally from the DigitalGlobe (now Maxar) constellation with
a resolution of 30cm for land-use classification task with a
total of 63 unique classes representing around 200 countries
worldwide. Following the practice of FMoW-WILDS (Koh
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Fig. 3 The geographical distribution of DSGR which indicates a global representation. The different colours represent the six different geographic
regions in DSGR individually. Whereas, the shades represent the number of samples per country within each region

et al., 2021) to reduce I/O usage, in the creation of DSGR,
we used PNG compressed versions of the raw images that
are resized to 224 × 224 pixels focusing only on the RGB
bands of the satellite imagery.

We have performed careful cleaning, preprocessing and
rebalancing of the raw images to reduce the influence of
factors such as shortage of data for a specific domain, geo-
graphic region, or data imbalance on the overall performance
of DL models. More notably, we attempted to address the
issues of data imbalance (1) cross-splits within a domain, (2)
cross-domains and (3) the cases where both cross-domain
and cross-split discrepancies existed, through the steps illus-
trated in Figure 4. We provide the details of each step as
follows:
Within-Domain Preprocessing
Initially, we followed the original dataset splits proposed by
fMoW which consisted of Train, Validation, Test and Seq
splits. The Seq split was omitted from our study. Reserv-
ing the original splits was necessary to ensure that there
was no data leakage between the Train and Test splits since
fMoW was designed as a temporal dataset, with individual
sequences consisting of multiple images of the same loca-
tion captured at different time instances. However, once we
partitioned the raw images into distinct geographic regions,
a mismatch between the number of classes cross-splits was
observed. That is, some classes appeared in the Train split

Fig. 4 Preprocessing pipeline used in the creation of our dataset, DSGR

but not in the Test split or vice versa. To address this issue,
we carefully analysed the classes in each split within-domain
and dropped the mismatched classes and those with the least
number of samples. Afterwards, we noticed that while the
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Table 2 Classes that are included and excluded from DSGR during the
preprocessing stage

Included in DSGR

Airport, Airport hangar, Airport terminal , Amusement park, Archaeo-
logical site, Barn, Burial site, Crop field, Dam, Educational institution,
Electric substation, Factory or powerplant, Fire station, Flooded road,
Gas station, Golf course, Ground transportation station, Helipad,
Lighthouse, Office building, Oil or gas facility, Park, Parking lot or
garage, Place of worship, Police station, Port, Prison, Railway bridge,
Recreational facility, Road bridge, Shipyard, Shopping mall, Single-
unit residential, Smokestack, Stadium, Storage tank, Surface mine,
Swimming pool, Tower, Water treatment facility, Wind farm.

Excluded from DSGR

Aquaculture, Border checkpoint, Car dealership, Construction site,
Debris or rubble, Fountain, Hospital, Impoverished settlement, Inter-
change, Lake or pond,Military facility,Multi-unit residential, Nuclear
powerplant,Race track,Runway, Solar farm,Space facility, Toll booth,
Tunnel opening, Waste disposal, Zoo.

number of classes in Train and Test splits became identi-
cal, the number of classes in the Validation split was notably
lower than those of the Train and Test sets. Hence, for such
unique cases, we further divided the Train split of the classes
whichweremissing from theValidation using a 70 : 30 ratio,
where 70% of the sequences in original Train split remained
as they are and 30% of the sequences were added to the Val-
idation split.
Cross-Domain Preprocessing
Besides the within-domain cross-split mismatch between the
number of classes, we have observed that there was also an
imbalance between the number of classes across domains.
For example, the Tunnel-Opening class existed in the Train
set of AS, but not in AF.

To resolve the issues of discrepancies in the number
of classes cross-domains and the cases where both cross-
domains and cross-split discrepancies existed, we dropped
the classes that were not present in any of the splits (Train,
Validation or Test) in a specific domain with respect to
the other domains. Following the previous example, if the
Tunnel-Opening class was not present in the Train set of AF
but existed in the Train set of AS, thenwe dropped it.We also
cross-checked all the different combination of splits within-
domains and cross-domains for all the classes and rebalanced
them using the aforementioned technique accordingly. Sub-
sequently, it was observed that a number of classes in some
domains contained very few data samples compared to other
domains. Therefore, those classes were dropped from the
dataset, as well. Table 2 shows the classes included in DSGR,
and those dropped throughout the preprocessing stage.

Furthermore, it can be argued that evenwith the attempt of
rebalancing and reducing the overall data imbalance, DSGR
inherits these inevitable imbalance cases from the underlying
biases of fMoWwhen it comes to the distribution of samples
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Table 3 Geographic
region-wise data partitions used
in all experiments

Split AS AF OC EU LAC NA

Training 51, 266 20, 254 8, 610 97, 625 37, 603 65, 065

Validation 7, 243 2, 865 1, 420 14, 853 5, 072 9, 438

Test 7, 264 2, 883 1, 396 14, 644 5, 452 9, 629

per class and per geographic region. This is attributed to the
way the classeswere defined in fMoW,where there are incon-
sistencies in the classification granularity. Additionally, an
important factor that effect the data imbalance is the scarcity
of satellite imagery for underrepresented geographic regions
in comparison to others.

To determine whether the performance changes of DL
models on OOD data are due to data imbalance or domain
shift, we conducted two controlled experiments. In the first,
we capped the number of samples per region at 8,000 while
maintaining the overall class sample distribution for each
region (details in Section 5.7.1). In the second, we ensured a
balanced distribution of samples across classes and regions
(discussed in Section 5.7.2). Both experiments showed that
class imbalance has a negligible impact compared to the sig-
nificant performance drop caused by domain shift.

While data imbalance is a well-known issue in the DL
community and beyond the scope of this paper, we aimed to
reduce its effect on the overall OOD performance through
the aforementioned techniques2.

3.2 Final Dataset

This process yielded our dataset, DSGR, with global cov-
erage across all geographic regions. In particular, DSGR
includes samples from 49 countries in AS, 52 in AF, 6 in
OC, 43 in EU, 43 in LAC, and 3 in NA, as shown in Figure 3,
where the intensity of the shade represents the country-level
distribution of samples with respect to the geographic region
it belongs to. More specifically, DSGR comprises a total of
362, 582 samples from 41 classes across different splits and
geographic regions. The total number of samples per split in
every geographic region is indicated in Table 3. Whereas, a
detailed breakdown on the number of samples per class in
each geographic region is shown in Table 4. From this table,
it can be observed that geographic regions such as AF and
OC consist of smaller data set sizes whereas EU andNAhave
larger data sets followed by AS and LAC.

Similarly, Figure 5 illustrates the cross-domain training
data distributions across the land-use classes in DSGR3 An
interesting observation from this figure is that such a dis-
crepancy in the training set sizes cross-domains usually stems

2 Further information and discussion on DSGR dataset and data imbal-
ance can be found in Section 6.2.
3 A closer look at the class distribution per-geographic region can be
found in A.

Table 4 Breakdown of the DSGR dataset with number of samples per
class for each geographic region. The heatmap representation is with
respect to the samples of the same class across geographic regions

Geographic Region
Class AS AF OC EU LAC NA

Airport 730 638 15 70 408 5

Airport hangar 749 546 185 1, 348 867 2, 656

Airport terminal 1, 090 514 280 1, 343 1, 319 1, 243

Amusement park 1, 718 275 137 3, 073 957 1, 439

Archaeological site 1, 144 197 28 1, 496 470 92

Barn 303 190 126 5, 478 473 1, 433

Burial site 624 152 111 2, 891 710 958

Crop field 3, 732 1, 541 497 22, 606 1, 877 1, 660

Dam 1, 022 640 147 1, 025 501 2, 265

Educational institution 4, 207 590 319 3, 183 3, 600 3, 896

Electric substation 1, 300 398 131 2, 494 598 2, 384

Factory or powerplant 668 282 34 2, 226 513 1, 048

Fire station 411 70 140 3, 323 536 2, 362

Flooded road 247 92 130 866 276 1, 112

Gas station 1, 083 172 232 2, 232 1, 545 2, 012

Golf course 674 200 193 1, 226 340 2, 412

Ground trans. station 3, 587 872 1, 181 4, 110 3, 103 1, 258

Helipad 1, 358 221 130 1, 192 1, 131 1, 693

Lighthouse 673 224 238 1, 681 638 1, 366

Office building 920 208 171 3, 001 622 2, 687

Oil or gas facility 2, 199 268 39 1, 677 822 804

Park 1, 103 74 693 1, 828 1, 211 1, 545

Parking lot or garage 2, 643 445 914 6, 049 1, 624 5, 700

Place of worship 6, 845 3, 939 358 4, 278 5, 356 4, 271

Police station 1, 008 401 126 3, 193 1, 287 825

Port 670 244 107 827 428 140

Prison 522 333 88 2, 239 1, 375 1, 225

Railway bridge 1, 282 111 247 2, 555 228 1, 677

Recreational facility 4, 353 603 1, 469 10, 030 4, 38916, 453

Road bridge 2, 104 190 263 1, 799 464 2, 083

Shipyard 174 34 72 345 47 193

Shopping mall 1, 198 280 561 2, 866 1, 373 1, 440

Single-unit residential 2, 495 7, 015 862 2, 347 807 497

Smokestack 758 224 75 4, 957 181 312

Stadium 1, 608 487 176 1, 346 1, 543 2, 448

Storage tank 638 345 150 3, 766 502 1, 706

Surface mine 1, 141 221 140 3, 185 651 1, 243

Swimming pool 646 1, 487 212 1, 332 3, 451 3, 798

Tower 2, 953 826 82 2, 702 635 2, 348

Water treatment facility 746 249 142 4, 224 338 1, 307

Wind farm 4, 447 204 225 713 931 136

Total65, 77326, 00211, 426127, 12248, 12784, 132
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from the natural distribution of data availability of these geo-
graphic regions. For example, an oil or gas facility might be
present in AS in a larger number than in OC.

Likewise, when it comes to cross-class discrepancies, a
Single-Unit Residential class is expected to have a larger
number of samples in comparison to an airport within a
geographic region. Such cross-class discrepancies can be
considered as an inherent difficulty of land-use and land-
cover classification task. Hence, the ultimate goal is to have
amodel that is robust to both the imbalance of samples cross-
class and cross-domains.

4 Domain Generalisation Background

In this section, we lay the foundation to our experiments
by, first, introducing the mathematical formulation behind
different types of DG in Section 4.1. Next, in Section 4.2,
we describe the benchmark DG algorithms we selected for
training the DL models. Finally, we explain the metrics used
to evaluate and measure the spatial domain shift experienced
by the DL models in Section 4.3.

4.1 Mathematical Formulation

Let X be the input feature space and Y be the target label
space. One can define a domain, D, with PXY as the joint
distribution on X × Y . The goal of DG is to learn a model
f : X → Y using data samples drawn from the source
domain(s) such that when themodel is evaluated on the OOD
target data, the error on both source (ID) and target (OOD)
test data is minimal.

In the generic definition of domain generalisation, also
known as Multi-Source DG, we assume that multiple (N )
similar but distinct source domains, Ds , where s ∈ {1, ..., N }
indicates a unique source domain, are available during train-
ing. Therefore, the training set, Dtrain , is defined as:

Dtrain =
N⋃

s=1

Ds

Ds = {(xsi , ysi )}Ms
i=1 (1)

where xsi is the i th sample with label ysi and Ms is the total
number of training samples belonging to the domain Ds .
Each source domain Ds is associated with a joint distribution
Ps
XY . While the distributions of the source domains might

be similar, they are not identical, i.e., Ps
XY �= Ps′

XY , s �=
s′ and s, s′ ∈ {1, ..., N }.

As a concrete example of themulti-source DG setup using
DSGR, we train a DG model on the union of training sets of
all geographic regions apart from AS.

Single-Source DG is a special case of this generic defi-
nition where N = 1. That is, we assume there is only one

source domain available during training, and hence, define
Dtrain as follows:

Dtrain = Ds (2)

To demonstrate the single-source DG setup using DSGR,
we exclusively use the training set of a single geographic
region, for instance AF, for training a DG model.

In DG, we define the OOD target domain(s) as Dt , where
t represents a target domain such that t �= s and Dt has a
joint distribution Pt

XY where Pt
XY �= Ps

XY ,∀s ∈ {1, ..., N }.
Hence, we define the test set as:

Dtest = {Dt |t ∈ {1, ..., K }}
Dt = {(xti , yti )}Mt

i=1 (3)

where K is the total number of target domains, xtj is the j th

sample with label ytj and Mt indicates the total number of
test samples from the target domain, Dt .

4.2 Benchmark Domain GeneralisationMethods

In this study, we evaluate the performance of five SOTA
DG methods, namely ERM (Vapnik, 1999), IRM (Arjovsky
et al., 2019), Deep CORAL (Sun & Saenko, 2016), group
DRO (Sagawa et al., 2019), and CLIPood (Shu et al., 2023),
on ourDSGRdataset. As previously discussed in Section 2.1,
ERM has shown superior generalisation performance com-
pared to modern DG algorithms across various standard DG
datasets (Gulrajani & Lopez-Paz, 2021). As a result of these
findings, ERM has been established as a standard baseline in
all DG studies. Similarly, when it comes to regularisation-
based DGmethods, IRM (Arjovsky et al., 2019) has become
a classical DG method among the DG community. Further-
more, due to the success of Deep CORAL (Sun & Saenko,
2016) in DA, the utilisation of Deep CORAL has been
extended to train DG models as well and since then has
become another classical DG technique. Moreover, we use
group DRO (Sagawa et al., 2019) as one of the recent tech-
niques to address the DG problem by redefining the usage
of groups to domains in our experimental analyses. Finally,
due to the outstanding performance of CLIPood (Shu et al.,
2023) in comparison to the SOTA DG methods on the clas-
sical DG benchmark datasets, we consider CLIPood as a
foundation-model-based DG technique in our experimental
analyses. While the authors attempted to address both DG
andOpenClass problems usingCLIPood,we explicitly focus
on investigating the capabilities of this algorithm on the DG
problem. More specifically, we aim to examine its perfor-
mance on our realistic and challenging remote sensing DG
dataset, DSGR.
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Fig. 5 The representations in this diagram provides an overview of the
cross-class training data distribution for each of the geographic regions
as well as cross-domain overall data distribution. There are 41 unique

classes in DSGR which are indicated as the sectors in this diagram.
Whereas, the number of samples per class are indicated dividers along
the radius of the diagram

4.3 Evaluationmetrics

Given that DG is an emerging field, the evaluation techniques
for DG models are also an open area of research. However,
researchers have adapted techniques to evaluate the perfor-
mance of DL models on OOD datasets. Leave-one-domain-
out is one of the most popular evaluation setups (Gulrajani
& Lopez-Paz, 2021), in which one of the domains is left out
of the training phase. The left-out domain is then used to
test and evaluate the performance of the model without any
further fine-tuning. To this end, one of the metrics used by
the DG community is Average Accuracy (Shen et al., 2021),
where the overall performance of the model is computed col-
lectively over the set of target domains Dtest as follows:

Average Accuracy = 1

|K |
∑

k∈K
Accuracyk (4)

where k represents a single domain and K is the total number
of domains such that k ∈ {1, ..., K }.

Besides average accuracy, we introduce through this work
another evaluation metric denoted as performance drop,
which measures the percentage of performance hit experi-
enced by the model when exposed to OOD data from a target
domain. This is formulated as follows:

Performance Drop (%) = −100 × AOOD − AI D

AI D
(5)

where AI D and AOOD represent the average accuracy of
the combination of models tested on a specific geographic
region’s ID and OOD test sets, respectively.

Since we will be comparing ID versus OOD performance
of DG algorithms using their accuracy values, we opt to use
the well-known harmonic mean as another evaluation met-
ric to measure the differences between these values. This is
inspired by its usage as an evaluation metric in the recent
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generalised zero-shot learning studies (Xian et al., 2017; Fu
et al., 2019; Chen et al., 2020), where it is used to compute
a joint score of the model’s performance on training and test
sets. The harmonic mean is defined as follows:

Harmonic Mean (H) = 2 × AOOD × AI D

AOOD + AI D
(6)

5 Experiments

As introduced in the preceding sections, we aim to shed light
on the DG problem for land-use classification task using
satellite imagery. We first clarify the experimental settings
and parameters in Section 5.1. Then, in Section 5.2, we cre-
ate the ideal setup under the i.i.d. assumption, where samples
from all domains, including the target domain, are available
during the training phase. We use the results as an upper
bound for comparison with our experiments on DG solu-
tions. After that, we present the results of four experiments
that evaluate the following aspects of DG, respectively:

(i) The role of single-source domain training in addressing
DG for spatial domains in satellite imagery. This setup
aims to understand whether DL models, while obvious
to human eyes, interpret different geographic regions
through distinctive features even for typical land-use
classes such as recreational facilities, educational insti-
tutions, stadiums, etc. This provides us with an intuition
about the domain shift, if any, experienced by the model
(Section 5.3).

(ii) The effect of multi-source training, through collecting
data from multiple geographic regions. With this setup,
our aim is to explore the DG problem given multiple
spatial domains in satellite imagery and whether such a
scheme is sufficient for DL models to learn more univer-
sal representations of land-use classes that can translate
to better generalisable models (Section 5.4).

(iii) The influence of foundation models on SOTA DG tech-
niques. Our objective is to assess whether the strong
performance of foundation model contributes to enhanc-
ing the SOTA DG models under spatial domain shift. To
this end, we examine their performance using two ver-
sions of CLIP with different backbone sizes and evaluate
the overall performance of these techniques on the pro-
posed DSGR dataset (Section 5.5).

(iv) The effects of an OOD-aware training scheme, which
uses a left-out source domain as an OOD validation set
during training. Here our goal is to check whether such
a scheme leads to an improvement in the models’ gen-
eralisability across domains in contrast to using all the
available source domains as part of the ID validation set
(Section 5.6).

Table 5 ID data partitions used in the upper bound experiments

Source Target Training Validation Test

AS 7, 264

AF 2, 883

All Regions OC 280, 423 40, 891 1, 396

EU 14, 644

LAC 9, 629

NA 5, 452

Furthermore, to ensure comparability of the results, we fix
the same training, validation, ID and OOD test sets for each
geographic region in all experiments. We repeat each experi-
ment three times with different random seeds, and report the
average performance of each model on the ID and OOD test
sets, to reduce the impact of randomness. Moreover, to eval-
uate themodels’ performance, we use the evaluationmetrics:
average accuracy, performance drop and harmonic mean,
as described in Section 4.3. Along each experiment in the
following sections, we discuss the customised setting under
which these evaluation metrics are computed.

5.1 Experimental Setup

We trained ERM, IRM, Deep CORAL and group DRO
using DenseNet121 (Huang et al., 2017), pretrained on Ima-
geNet (Russakovsky et al., 2015), as the backbone model.
Furthermore, we used Adam as the optimiser of choice, a
batch size of 64, a learning rate of 0.0001 that decay with
a factor of 0.96 per epoch and trained all the models for
50 epochs with early stopping. This setup was followed in
all of our experiments. Furthermore, it is worth noting that
we have experimented with other classical backbone archi-
tectures such as ResNet50 (He et al., 2016) and different
hyperparameters, however, we have found that the effects
they had on the performance of the techniques were negligi-
ble.

For CLIPood, we followed the recommended setup in the
original paper (Shu et al., 2023) in all of our experiments
since we aimed to evaluate the performance of the-off-the-
shelf algorithm without rigorous fine-tuning. The reason
behind this choice is that hard fine-tuningwould hurt the gen-
eralisability of themodel to other datasets. However, we have
introduced an additional, larger backbone model of CLIP,
ViT L/14. Moreover, we used the same hyperparameters for
ERM with CLIP as a backbone model and CLIPood to war-
rant a fair comparison.

In terms of the computation power, we trained all of
our models on NVIDIA A100 GPUs with 80GB memory,
NVIDIA V100 GPUs with 32GB memory and NVIDIA
V100 GPUs with 16GB memory.
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Table 6 Accuracy results (in %)
of the upper bound scenario

Target
Algorithm AS AF OC EU LAC NA

ERM 67.3 ± 0.2 73.2 ± 1.3 66.3 ± 1.2 68.3 ± 0.1 61.6 ± 1.1 67.4 ± 0.8

IRM 66.1 ± 1.0 73.4 ± 1.2 65.9 ± 1.0 67.8 ± 0.8 61.6 ± 1.1 68.3 ± 0.2

Deep CORAL 68.0 ± 1.2 75.3 ± 1.3 69.8 ± 0.2 69.0 ± 0.5 63.7 ± 0.3 68.8 ± 0.4

Group DRO 66.4 ± 0.5 70.7 ± 0.6 65.6 ± 2.1 68.9 ± 0.7 59.6 ± 0.8 67.7 ± 0.8

CLIPood 56.3 ± 0.4 62.3 ± 1.1 64.0 ± 0.5 57.3 ± 0.3 48.8 ± 0.6 56.4 ± 0.6

Table 7 Single-source DG
accuracy results (in %) of ERM
where the diagonal cells indicate
the performance on the ID test
sets. Whereas, the off-diagonal
cells indicate the performance
on the OOD test sets

Target
Source AS AF OC EU LAC NA

AS 65.6 ± 0.3 41.6 ± 0.2 42.1 ± 3.1 41.0 ± 1.3 37.7 ± 0.2 41.3 ± 0.9

AF 33.8 ± 0.9 70.2 ± 0.6 38.7 ± 2.2 30.1 ± 1.3 31.8 ± 0.8 29.5 ± 1.4

OC 25.0 ± 0.5 19.9 ± 1.5 58.0 ± 1.0 32.0 ± 0.7 25.9 ± 0.1 34.2 ± 0.2

EU 41.2 ± 0.9 28.6 ± 3.3 49.3 ± 0.7 69.1 ± 0.3 35.4 ± 1.4 50.8 ± 1.0

LAC 38.3 ± 1.6 34.9 ± 0.1 45.7 ± 2.5 35.0 ± 1.3 57.5 ± 1.2 38.3 ± 1.6

NA 33.0 ± 1.9 22.4 ± 1.4 46.4 ± 1.1 46.4 ± 1.3 30.9 ± 2.3 68.1 ± 0.6

5.2 Upper Bound Analysis

In the ideal scenario that satisfies the i.i.d. assumption, all the
distributions that are seen by the model during test time are
available during the training phase, i.e., the target domain
is included as part of the training set. Hence, the model is
always evaluated on an ID test set.

In order to understand the upper bound of the model’s
performance under the best-case scenario on DSGR, we
trained the selected DG algorithms, namely, ERM, IRM,
Deep CORAL, group DRO and CLIPood, on the combined
training sets of all the geographic regions (domains). Sim-
ilarly, we used the combined validation set to assess the
performance of the model during the training phase. After-
wards, the models were tested on each geographic region
(domain) separately as previously described in Table 3 (Sec-
tion 3.2). Table 5 presents the number of samples in each set
used in these experiments. Finally, the average accuracy was
computed as shown in Table 6.

The results show that, under the i.i.d. assumption, the dif-
ference in performance between ERM, IRM, Deep CORAL,
and group DRO is relatively minimal. However, CLIPood
demonstrates a weaker ID performance in comparison to all
the other DG algorithms on DSGR. This can be attributed to
the more realistic and challenging nature of DSGR, which is
also reflected in the overall low accuracy scores (i.e., mostly
less than 70%) achieved by all the models across all geo-
graphic regions.We consider these results as the upper bound
to compare against in the next set of experiments.

5.3 Single-Source Domain Generalisation

In this experiment, we explored the role of single-source
training in addressing DG for spatial domains in satellite
imagery. Following the definition mentioned in Eq. (2), we
trained a model on a single source domain, Dtrain , and
assessed its OOD performance on all the other unseen target
domains, Dtest as defined in Eq. (3), separately. For exam-
ple, if the model was trained on the training set of the source
geographic region AS, the validation set of AS was also used
to assess the training progress. Whereas, during the testing
phase, the trained model was evaluated on the test set of AS
to obtain its ID performance as well as on the test sets of all
the other unseen target geographic regions (i.e., AF, OC, EU,
LAC, and NA) individually to obtain its OOD performance.
The breakdown of the dataset for this experiment is presented
in Table 3.

For each algorithm,we trained a total of sixmodels, where
the training for each model was on a unique geographic
region. This resulted in a total of 108 evaluation experiments
per algorithm. For brevity, we report only the average perfor-
mance of ERMon each individual testing dataset in Table 7.4

It can be observed that, for all the geographic regions, there
is a significant generalisation gap between the OOD and ID
performance. For example, for AF, the ID performance is
around 70.2%, whereas the OOD performance ranges from
19.9% to 41.6% when OC and AS are used as the single-
source domain, respectively, resulting in an average OOD
performance of 29.5% on AF test set.

4 The average performances of IRM, Deep CORAL, group DRO and
CLIPood can be found in B.1.
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Fig. 6 Single-source DG for ERM evaluated on OOD data versus ID
data with respect to the upper bound using DSGR

Furthermore, Figure 6 compares the ID and OOD perfor-
mance of all the models to the upper bound. As anticipated,
for all the geographic regions, the ID performance of the
models is comparable to the upper bound. However, when
faced with the OOD test set, it can be observed that, a model
trained on a single source domain, always experiences a sharp
decline in performance compared to the ID test sets which,
consequently, yields a large generalisation gap between the
OODand the upper bound.One possible explanation for such
a performance drop is that the representation of theOODdata
is far from that of the ID data in the latent space.

To further understand this relation in the latent space,
Figure 7 represents a t-SNE projection of test data sam-
ples of two classes, namely Oil and Gas Facility,—one of
the most difficult classes in the dataset (further discussed in
Section 5.7.6)—, and Single-Unit Residential from all geo-
graphic regions. The feature embeddings are obtained using
an ERM model trained on EU. Since the feature extractor
model is originally trained on EU as a single-source domain,
we see that it can clearly distinguish the test samples from
EU (ID) as two distinct and separable clusters corresponding
to the two land-use classes. However, when we investigate
the feature projections of the test data samples from the
other geographic regions (OOD), we observe that the sam-
ples belonging to the same class but from OOD geographic
regions are not aligned well (i.e., clustered tightly) with the
corresponding class samples from the ID (EU) test set due
to domain shift. Consequently, this phenomenon reduces the
cross-class separation and increases the confusion between
classes, leading to the significant drop in OOD performance
of the model.

When it comes to the overall analysis of all the algorithms
onDSGR,Table 8 summarises each algorithms’ performance
in terms of average accuracy on ID and OOD test sets as
well as the performance drop and the harmonic mean. Put
specifically, the ID performance is measured as the accu-
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racy of the model trained and tested on the same geographic
region. Whereas, OOD test is computed by averaging the
accuracy of themodels trained on all the different geographic
regions except for theOOD target geographic region (Eq. (4))
and tested on the excluded OOD target geographic region.
Finally, the performance drop (Eq. (5)) and the harmonic
mean (Eq. (6)) indicate the overall performance between ID
and OOD test results for each geographic region.

It can be observed from Table 8 that the results are con-
sistent, with minor differences, among the four benchmark
algorithms ERM, IRM, Deep CORAL and group DRO.
Whereas, CLIPood performs worse than ERM on the ID
test set on majority of the geographic regions apart from
AF, where the average ID performance between CLIPood
and ERM is comparable. However, CLIPood outperforms
the other algorithms on the average OOD test sets where the
performance drop of CLIPood is notably lower. One possi-
ble explanation for such a behaviour is that CLIPood is able
to generalise to unseen domains but underperforms on ID
data. This might be an undesirable characteristic, especially,
when themodel is deployed in an environment, wheremajor-
ity of the time, it will be faced with ID cases and occasionally
OOD cases. Therefore, the aim of a good DG algorithm is to
achieve a good OOD performance without jeopardising the
ID performance.

To evaluate the impact of data imbalance on domain
generalisation and to investigate whether the performance
degradation of DL models on OOD data is due to data
imbalance or domain shift, we conducted two controlled
experiments. In the first experiment, the number of samples
per region was capped at 8,000 while preserving the overall
class distribution per region (further details can be found in
Section 5.7.1). In the second experiment, we ensured that the
sample distributions across classes and regions are equivalent
and balanced (details can be found in Section 5.7.2).

5.4 Multi-Source Domain Generalisation

Unlike the single-sourceDGexperiment discussed in Section
5.3, where themodelswere trained on single source domains,
in this experiment, we shift our focus to a more realistic
scenario, where we have multiple source domains available
during the training phase. We follow the leave-one-domain-
out setup and create different dataset groups defined inEq. (1)
with C = {AS, ..,NA} and each s = {C − t} represents a
combination of the all the geographic regions except for the
left-out OOD target geographic region, t . Table 9 presents the
number of samples per split for each group in this experiment.

For each benchmark algorithm, we trained a total of six
models, each on one of the groups,D{C−t}, t ∈ {AS, .., N A},
and validated the performance of each model using the ID
validation set during training. Moreover, each model train-
ing was repeated three times with different random seeds

to ensure the robustness of results. Then, we evaluated the
trained models on both ID and OOD testing sets individu-
ally during the testing phase. This resulted in a total of 540
evaluation experiments.

Table 10 presents the detailed breakdown of ERM’s per-
formance results on each group.5 From the outcomes of this
set of experiments, one could observe a significant perfor-
mance dropwhen testing theDGalgorithmsonOODtest data
even when training the DG algorithms on multiple-source
domains.

To analyse the performance with respect to the other algo-
rithms, we compiled the average OOD and ID performances
along with the performance drop and the harmonic mean
between the ID and OOD test sets per geographic region
for all five algorithms in Table 11. An interesting observa-
tion that stands out is that while CLIPood had achieved an
outstanding performance on traditional datasets like PACS,
where it outperformed theDG algorithmswith around 97.1%
OOD accuracy (Shu et al., 2023), the average OOD perfor-
mance of CLIPood on majority of the geographic regions in
DSGR, apart from OC, is lower than that of ERM. Whereas,
its performance is comparable to ERM when evaluated on
AS. Furthermore, when it comes to the ID performance of
CLIPood trained on multiple source domains, we draw a
similar conclusion to that made in the single-source DG
experiment, where its performance is consistently signifi-
cantly lower than that of the other SOTA DG algorithms.

When comparing the aforementioned results with those
found in the single-source DG experiment, as presented for
ERM in Table 12,6 two crucial conclusions can be drawn.
Firstly, comparing the results of the ID test sets in single-
source DGwith the results of ID test sets inmulti-source DG,
one can observe that in the majority of the cases, apart from
EU, there is an improvement in the overall performance of the
model. Secondly, a similar observation is found when eval-
uating on the OOD test sets, where the average performance
drop of the models in multi-source DG is noticeably lower
than that of in single-source DG. However, in this experi-
ment, the improvement in the performance, with respect to
the upper bound, is reflected in all the different geographic
regions as illustrated in Figure 8. This indicates that training
on multiple source domains improves the generalisability of
DLmodels. As an example, in single-source DG, the average
accuracy of all themodels that are not trained onASbut tested
on AS is 34.2%. Whereas, the model which is not trained on
AS but tested on AS in multi-source DG has a accuracy of

5 Since the difference between the performance of ERM in comparison
to the other algorithms is small, we leave the tables with breakdown
results of IRM, Deep CORAL, group DRO and CLIPood to B.2 for
brevity.
6 The comparison of ID versus OOD performance between the two
experiments for the rest of algorithms can be found in B.2.
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Fig. 7 t-SNE projection of two
classes from DSGR where an
ERM model is trained on EU
(ID) and evaluated on the other
OOD geographic regions

Table 9 Data partitions for
multi-source domain
generalisation experiment

Sources Target Training ID Validation ID Test OOD Test

D{C−AS} AS 229, 157 33, 648 34, 004 7, 264

D{C−AF} AF 260, 169 38, 026 38, 385 2, 883

D{C−OC} OC 271, 813 39, 471 39, 872 1, 396

D{C−EU} EU 182, 798 26, 038 26, 624 14, 644

D{C−LAC} LAC 242, 820 35, 819 35, 816 5, 452

D{C−NA} NA 215, 358 31, 453 31, 639 9, 629

Table 10 Multi-source DG
accuracy results (%) for ERM.
The boldface cells indicate the
performance of each model on
the OOD test set. Whereas, the
off-diagonal scores reflect the
ID test performances

Target
Source AS AF OC EU LAC NA

D{C−AS} 50.8 ± 0.7 72.0 ± 0.8 67.2 ± 0.6 69.1 ± 0.6 60.9 ± 0.3 68.6 ± 0.4

D{C−AF} 67.7 ± 0.5 49.3 ± 0.9 66.0 ± 1.7 69.0 ± 0.2 61.8 ± 0.2 68.6 ± 0.8

D{C−OC} 67.4 ± 0.3 73.6 ± 1.0 58.2 ± 1.5 68.8 ± 0.2 61.9 ± 0.6 68.4 ± 0.2

D{C−EU} 67.0 ± 0.9 73.1 ± 1.1 66.2 ± 1.5 51.7 ± 1.0 61.4 ± 0.8 67.1 ± 0.7

D{C−LAC} 66.9 ± 0.5 72.1 ± 1.5 65.8 ± 1.0 68.8 ± 0.3 48.6 ± 1.3 68.6 ± 0.2

D{C−NA} 66.5 ± 0.7 71.5 ± 2.0 66.6 ± 1.3 68.8 ± 0.4 61.0 ± 0.7 55.8 ± 1.1

50.8% for ERM. This is equivalent to an improvement of
approximately 49%.

Another interesting observation is that AF, an underrep-
resented region, had a significantly better performance in
multi-source DG in comparison to single-source DG on the
OOD data, with an increase of 67.1% in its average perfor-
mance. A plausible explanation is that the satellite imagery
captured ofAfrica looks very different from the other regions.
Therefore, one could hypothesis that increasing the diver-
sity of the training set will lead to better generalisation.
We discuss in Section 6.4 potential ways to further improve
the performance of the underrepresented regions for single-
source DG.

To ensure that the observations were not a results of the
discrepancy in training data size between single-source and
multi-source experiments, we conducted additional experi-
ments under a controlled setup, discussed further in Section
5.7.1, wherewe fixed the number of training samples for both
experiments, single-source and multi-source DG.

5.5 Impact of FoundationModels on Domain
Generalisation

Foundation models play a big role in generalisation, which is
attributed to being pre-trained on large and diverse datasets
in addition to having larger model capacity in comparison
to the well-known DL models such as DenseNet (Huang et
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55 Table 12 Comparison results of ERM: Multi-source vs. single-source

DG for DSGR

Target
AS AF OC EU LAC NA

ID % Increase 2.3 3.3 14.2 −0.3 6.8 0.1

OOD % Increase 48.3 67.1 31.1 40.1 50.4 43.8

Fig. 8 Comparison results of ERM: Single-source vs. multi-source DG
for DSGR

al., 2017) and ResNet (He et al., 2016). In CLIPood (Shu
et al., 2023), the authors use CLIP (Radford et al., 2021)
as the backbone model to their algorithm and show that their
algorithm outperforms the SOTADG techniques on the tradi-
tional DG benchmark datasets. However, we have observed,
through the preceding experiments, that when faced with a
challenging and realistic dataset such as DSGR, CLIPood
does not consistently outperform the classical ERM with
DenseNet121 as its backbone model. Following a similar
intuition, in this section we examine the effect of introduc-
ingCLIP as a backbone toERM, as opposed toDenseNet121,
on its DG performance using a challenging DG dataset such
as DSGR. We evaluate ERM with two different backbone
CLIP models each with a vision transformer (ViT) of types
B/16 and L/14 under single-source DG and multi-source DG
experiments.

Table 13 presents the results of the single-source DG
experiment on DSGR using different backbone models,
namely, ERMwith DenseNet, CLIP ViT B/16 and CLIP ViT
L/14 as well as CLIPood with CLIP ViT B/16 and CLIP ViT
L/14. One can draw the following three conclusions. Firstly,
by analysing the effects of the different backbone models
for ERM using the harmonic mean, shown in Figure 9, it
is clear that ERM with either versions of CLIP as a back-
bone outperforms, by a large margin, the traditional ERM
with a DenseNet121 backbone. Secondly, going from ViT
B/16 to ViT L/14 improves the performance of both ERM
and CLIPood. However, an interesting observation is that as
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the size of ERM with CLIP as a backbone increases, the
gain in the generalisation reduces when compared with the
gain between either of the backbone models and ERM with
DenseNet121. Finally, it can be observed, that ERM with
CLIP ViT L/14 outperforms CLIPood with CLIP ViT L/14
on all the geographic regions, apart from AF, where the per-
formance is considered comparable to that of CLIPood with
CLIP ViT L/14.

In a similar vein, Table 14 presents the performance of
ERM with DenseNet121, CLIP ViT B/16 and CLIP ViT
L/14 as backbones as well as CLIPood with CLIP ViT B/16
and CLIP ViT L/14 as backbones in multi-source DG. We
observed that ERM with the smaller version of CLIP ViT
B/16 outperforms, in terms of ID and OOD, ERM with
DenseNet121 and CLIPood with CLIP ViT B/16 in all the
geographic regions and surprisingly beats CLIPood with
CLIP ViT L/14 as well in majority of the geographic regions
apart fromOC,where the difference in performance isminor.
Whereas, Figure 10 shows thatERMwithCLIPViTL/14out-
performs CLIPood with CLIP ViT L/14 and consequently all
the other models in all the metrics. Moreover, it is important
to note that the performance drop of training ERMwith CLIP
ViT L/14 in this experiment is lower than single-source DG
training when evaluated on both ID and OOD respectively.
Contrarily, CLIPood’s performance deteriorates significantly
when evaluated on ID data under the multi-source setup. One
plausible explanation to such undesired performance hit is
that CLIPood, as discussed in Sections 5.3 and 5.4, is not
robust when evaluated on ID data, especially when trained
using data samples from multiple domains, each with a dif-
ferent underlying distribution.

Given the impact of foundation models on DG algo-
rithms for the land-use classification task is underexplored,
we extend our analysis to investigate the effects of incorpo-
rating foundation models with DG algorithms for land-use
classification task that suffers from temporal domain shift
in Section 5.7.3. Our intuition behind such an analysis is to
explore whether their impact will be consistent across spatial
and temporal domain shifts.

5.6 OOD-Aware Multi-source Domain Generalisation

Previous experiments investigated the conventional experi-
mental setup in which we validated the performance of the
DL model on the ID validation set during training. How-
ever, the authors of FMoW-WILDS (Koh et al., 2021) put
forward the idea of introducing a unique OOD validation
set, which effects the early-stopping criteria and the learning
rate, and consequently, the training process and the resulting
model. Their findings suggests that using an OOD valida-
tion set helps in improving the generalisation of the model.
While this observation might hold true for the unique cate-
gorisation of domains in FMoW-WILDS (Koh et al., 2021),

Fig. 9 Foundation models comparison as a backbone for ERM vs.
CLIPood in single-source training using DSGR

such as temporal domain shift, we investigate if this claim
holds also for our definition of domains with spatial domain
shifts. Therefore, in this experiment, we omitted two unique
domains from the training set. The first is used for model
validation purposes, OOD validation set, and the second is
reserved as OOD test set. We then repeated the experiments
for all the different combinations of geographic regions. Each
of these combinations is denoted as Dt\v, which represents
all the regions apart from the left out OOD test and validation
regions, t and v respectively. Table 15 presents the number
of data samples in each of these combinations. As an exam-
ple of the training setup for the combination which has a
unique left-out-domain, AF, reserved for OOD testing, with
the remaining five geographic regions, we train five models
each time using one of the five geographic regions as the
OOD validation set, v.

For each benchmark algorithm, we trained a total of 30
models and repeated the experiment with three different
seeds. This resulted in 450 trained models. We ran the eval-
uation experiments 2700 times to ensure that we cover all
the different combinations. The initial observations from the
results, presented in Table 16, are aligned with the findings
of the single-source DG (Section 5.3) and multi-source DG
(Section 5.4) experiments discussed previously, where there
is a clear performance drop between the ID and OOD test
sets.

However, unlike theobservations found inFMoW-WILDS
(Koh et al., 2021), our experiments revealed that using an
OOD validation set does not improve the performance of the
model on the target OOD test set. On the contrary, it hits
the performance of the model in majority of the cases as
illustrated for ERM in Table 17. One explanation to such a
performance hit is related to the decrease in the number of
domains used for training due to reserving one domain for
OOD validation. Consequently, given that the model under
this setup is exposed to fewer and less diverse data distribu-
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Table 13 Foundation models as a backbone for DG algorithms in single-source training

Algorithm and Backbone
ERM CLIPood

Geographic Region Test DenseNet121 CLIP ViT B/16 CLIP ViT L/14 CLIP ViT B/16 CLIP ViT L/14

AS ID 65.60 73.02 77.76 61.87 71.48

OOD 34.20 46.58 50.56 43.58 50.03

AF ID 70.20 79.69 82.02 70.42 77.95

OOD 29.50 42.66 44.87 41.95 47.33

OC ID 58.00 69.79 72.40 60.91 69.10

OOD 44.40 59.36 63.62 54.74 63.41

EU ID 69.10 75.79 77.80 63.20 69.30

OOD 36.90 49.91 54.80 45.47 54.86

LAC ID 57.50 66.98 70.67 52.77 66.80

OOD 32.30 44.81 48.70 40.63 47.71

NA ID 68.10 75.29 76.46 64.95 70.02

OOD 38.80 52.18 57.09 47.38 56.12

Table 14 Foundation models as a backbone for DG algorithms in multi-source training

Algorithm and Backbone
ERM CLIPood

Geographic Region Test DenseNet121 CLIP ViT B/16 CLIP ViT L/14 CLIP ViT B/16 CLIP ViT L/14

AS ID 67.09 75.65 78.33 56.65 63.62

OOD 50.77 62.76 64.71 51.11 56.40

AF ID 72.48 81.56 84.04 63.54 71.72

OOD 49.27 57.10 57.95 45.67 56.11

OC ID 66.33 76.46 78.80 64.17 70.53

OOD 58.23 68.17 70.70 61.20 68.51

EU ID 68.90 76.76 78.95 57.98 65.91

OOD 51.70 63.15 66.13 51.03 59.84

LAC ID 61.41 70.61 73.91 49.65 57.69

OOD 48.63 59.03 61.71 44.99 52.08

NA ID 68.25 75.94 78.42 57.34 64.26

OOD 55.83 64.97 67.43 52.19 59.68

tions during training, it does not generalise as well as when
a larger number of the source domains, with diverse data
distributions, are used for training purposes. Furthermore,
the same is said when analysing the ID performance. There-
fore, we do not recommend reducing the number of source
domains dedicated for training to create an OOD validation
dataset, rather, it is encouraged to use more source domains,
where possible, in the training dataset as it has shown to
improve the accuracy of the model on the OOD test set.

Following the intuition behind the foundation model
experiment presented in Section 5.5, we further explored

OOD-aware setup while using different foundation models
as backbone in Section 5.7.4.

5.7 Additional Analyses

5.7.1 Domain Generalisation under a Controlled Setup

In the multi-source DG experiment discussed in Section 5.4,
Dtrain was defined as the union of multiple source domains
which are available during training. Naturally, combining
samples from multiple source domains results in a larger
training set size in comparison to single-source domain train-

123



International Journal of Computer Vision

Fig. 10 Foundation models comparison as a backbone for ERM vs.
CLIPood in multi-source training using DSGR

ing. Therefore, one might speculate that the improvement in
performance is due to having a larger training set rather than
a diverse training set. To better understand the main contri-
bution of the aforementioned improvement in performance,
we propose a controlled experimental setup, where the num-
ber of training samples in single-source domain training is
identical to that of multi-source domain training. That is, we
cap the number of training samples for both the single-source
andmulti-source experiments to 8, 000 samples, whilemain-
taining their underlying distributions.

Table 18 presents the performance of the models trained
on a single-source domain under this setup. We observe that
there is a sharp domain shift between the ID and OOD test
sets. This observation is consistent for the controlled multi-
source training setup shown in Table 19. More importantly,
when comparing the OOD performance of the models on the
controlled single-source training versus multi-source train-
ing, as illustrated in Figure 11, it seems clear that, despite
the fixed training set size, the performance of the model that
has been exposed to a more diverse dataset during training,
through multi-source training, yields a better performance in
comparison to the model that have seen a single distribution
through single-domain training. Hence, while a larger train-
ing set size enhances the performance of the model, so does
having a diverse data distribution during training. In particu-
lar, for the controlled multi-source experiment we have 1600
samples per-geographic region among the 41 classes, then,
the union of the training sets of each geographic region is
used for training. Whereas, the single-source setup we have
8000 samples among the 41 classes from a single geographic
region that is used during training.

Finally, it can also be observed from Figure 11 that the
OOD performance of both single-source and multi-source
DG under the controlled setup is lower than those presented
for the uncontrolled setup. Such a decrease in performance is
expected due to the reduced training set sizes in the controlled
setup in comparison to the uncontrolled setup.

Table 15 Data partitions for OOD-aware multi-source domain gener-
alisation experiment

OOD # OOD Target # OOD
Sources Val. Val. Domain Test

DAS \ AF AF 2, 865 AS 7, 264

DAS \ OC OC 1, 420

DAS \ EU EU 14, 853

DAS \ LAC LAC 5, 072

DAS \ NA NA 9, 438

DAF \ AS AS 7, 243 AF 2, 883

DAF \ OC OC 1, 420

DAF \ EU EU 14, 853

DAF \ LAC LAC 5, 072

DAF \ NA NA 9, 438

DOC \ AS AS 7, 243 OC 1, 396

DOC \ AF AF 2, 865

DOC \ EU EU 14, 853

DOC \ LAC LAC 5, 072

DOC \ NA NA 9, 438

DEU \ AS AS 7, 243 EU 14, 644

DEU \ AF AF 2, 865

DEU \ OC OC 1, 420

DEU \ LAC LAC 5, 072

DEU \ NA NA 9, 438

DL AC \ AS AS 7, 243 LAC 5, 452

DL AC \ AF AF 2, 865

DL AC \ OC OC 1, 420

DL AC \ EU EU 14, 853

DL AC \ NA NA 9, 438

DN A \ AS AS 7, 243 NA 9, 629

DN A \ AF AF 2, 865

DN A \ OC OC 1, 420

DN A \ EU EU 14, 853

DN A \ LAC LAC 5, 072

5.7.2 Domain Generalisation under a Balanced Class
Distribution Setup

Building on the discussion in Section 5.7.1, in this section,
we investigate the impact of data imbalance on the perfor-
mance of domain generalisationmodels. Specifically, we aim
to understand whether eliminating class imbalance can mit-
igate or entirely eliminate domain shift.

For our evaluations, we selected the AS and EU regions.
We began by rebalancing the dataset by capping the number
of examples per class to the minimum observed within these
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55 Table 17 Comparison results of ERM: OOD-aware vs. multi-source

DG

Target
AS AF OC EU LAC NA

ID % Increase −2.7 −0.8 −2.2 −2.0 −2.5 −1.6

OOD % Increase −3.8 −8.9 −2.4 −4.8 −3.8 −4.1

Fig. 11 Comparison results of controlled vs. uncontrolled setup using
ERM for multi-source and single-source DG for DSGR

two regions while ensuring that no classes were omitted. As a
result, the threshold was set at 58 samples per class, yielding
a total of 2,378 training samples per region.

Next, we trained ERM on each region individually, under
the single-source setup, and evaluated the model’s perfor-
mance across all regions. We repeated each training three
times to ensure the robustness of the results. Table 20 presents
the results of these experiments. Aligned with our previous
observations, particularly those in Section 5.7.1, eliminat-
ing class and data imbalance does not alter the general trend
where the model’s performance still exhibits a sharp degra-
dation in performance when transitioning from ID to OOD
evaluation.

5.7.3 Impact of Foundation Models on Domain
Generalisation under Temporal Domain Shift

To further investigate the influence of foundation models
on DG algorithms, we repeated the experiments discussed
in Section 5.5 for a temporal DG satellite imagery dataset,
FMoW-WILDS (Koh et al., 2021). The experiments yielded
the results presented in Table 21.

It can observed from the results that the performance of
CLIPood with CLIP ViT B/16 on ID and OOD datasets are
comparable, where it had the lowest performance followed
by CLIPood with CLIP ViT L/14. Whereas, similar to the
results previously found using DSGR in Section 5.5, ERM
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Table 18 Controlled
experiment for single-source
DG accuracy results (in %) of
ERM where the diagonal cells
indicate the performance on the
ID test sets. Whereas, the
off-diagonal cells indicate the
performance on the OOD test
sets.

Target
Source AS AF OC EU LAC NA

AS 52.6 ± 0.7 30.4 ± 0.9 27.5 ± 3.4 30.8 ± 1.4 30.0 ± 0.8 31.8 ± 3.4

AF 28.4 ± 0.5 65.8 ± 0.7 30.7 ± 2.4 26.8 ± 0.8 26.9 ± 1.8 27.3 ± 0.6

OC 23.3 ± 1.1 17.5 ± 1.5 57.2 ± 0.7 30.0 ± 0.6 24.6 ± 0.4 31.9 ± 1.6

EU 29.5 ± 0.7 19.8 ± 2.3 43.0 ± 1.1 51.7 ± 0.5 23.4 ± 2.0 35.7 ± 2.1

LAC 32.7 ± 0.9 31.3 ± 0.6 39.9 ± 1.6 30.0 ± 0.6 49.5 ± 0.3 30.3 ± 0.6

NA 26.2 ± 1.1 19.1 ± 1.4 38.8 ± 1.3 35.9 ± 1.1 24.6 ± 0.3 57.1 ± 0.7

Table 19 Controlled
experiment for multi-source DG
accuracy results (in %) of ERM
where the diagonal cells indicate
the performance on the ID test
sets. Whereas, the off-diagonal
cells indicate the performance
on the OOD test sets

Target
Source AS AF OC EU LAC NA

D{C−AS} 33.5 ± 0.8 58.5 ± 1.2 52.9 ± 1.7 42.5 ± 1.1 40.7 ± 1.9 45.5 ± 0.9

D{C−AF} 44.6 ± 0.6 28.1 ± 1.6 52.1 ± 2.4 42.3 ± 0.7 40.2 ± 0.4 45.4 ± 1.6

D{C−OC} 45.8 ± 0.2 58.9 ± 0.9 38.9 ± 2.0 42.6 ± 0.2 39.3 ± 0.5 45.4 ± 0.4

D{C−EU} 44.4 ± 0.4 58.5 ± 1.3 51.9 ± 1.2 34.1 ± 0.8 40.5 ± 0.3 45.4 ± 0.3

D{C−LAC} 45.8 ± 0.4 56.8 ± 3.2 52.8 ± 1.6 43.5 ± 1.0 31.9 ± 1.5 46.8 ± 1.6

D{C−NA} 44.2 ± 0.7 57.6 ± 0.3 50.0 ± 0.8 41.9 ± 0.8 39.9 ± 0.9 36.7 ± 0.7

Table 20 Controlled
experiment with Balanced Class
Distribution for single-source
DG accuracy results (in %) of
ERM where the diagonal cells
indicate the performance on the
ID test sets. Whereas, the
off-diagonal cells indicate the
performance on the OOD test
sets.

Target
Source AS AF OC EU LAC NA

AS 33.4 ± 2.2 21.6 ± 0.5 17.5 ± 2.4 17.5 ± 1.3 17.8 ± 1.1 19.6 ± 0.4

EU 23.1 ± 1.7 19.2 ± 2.5 28.8 ± 2.4 35.9 ± 2.1 18.8 ± 1.1 25.4 ± 1.6

with CLIP ViT L/14 outperforms CLIPood on OOD and
ID datasets. Therefore, these results indicate that the per-
formance of CLIPood versus ERM with CLIP is consistent
in both spatially or temporally defined domains.

5.7.4 Foundation Models on OOD-Aware Multi-Source
Domain Generalisation

We conducted an experiment similar to the one presented in
Section 5.5 to examine the influence of foundation model as
backbone to SOTA DG algorithm. However, in this experi-
ment, we evaluate their performance under an OOD-aware
setting similar to that discussed in Section 5.6.

Table 22 presents the outcomes of this experiment which
are aligned with the observations made in Section 5.5, where
ERM with either versions of CLIP outperforms both ERM
with DenseNet121 as well as both versions of CLIPood sig-
nificantly. Furthermore, similar to the findings of Section 5.6,
having a separate OOD validation set does not positively
impact the DG techniques’ generalisability, even when cou-
pled with foundation models as backbone.

5.7.5 Impact of Domain Shift on Specialised Remote
Sensing Foundation Model

With the rise of general-purpose foundationmodels, researchers
are exploring training and fine-tuning these models on large
amount of remote sensing imagery to enhance their per-
formance in downstream remote sensing applications. To
understand whether these models are robust under domain
shift and their generalisability to unseen domains, we assess
the zero-shot of RemoteCLIP (Liu et al., 2024), a Multi-
model Large LanguageModel (MLLM) trained on extensive
open-source remote sensing datasets, on DSGR. Further-
more, we compare its performance with our fine-tuned
versions of ERM and CLIPood under a multi-source setup,
using CLIP ViT L/14 as a consistent backbone.

The experimental results, presented in Table 23, reveal
that both the fine-tuned classical method, ERM, and the
fine-tuned DG specialised method, CLIPood, significantly
outperform RemoteCLIP. These findings are aligned with
observations reported by the authors (Liu et al., 2024), who
noted similar performance drops during zero-shot evalua-
tions on certain datasets. This indicate that while specialised
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Table 21 Foundation models as a backbone for DG algorithms using FMoW-WILDS

ERM CLIPood
Metric DenseNet121 (Koh et al., 2021) CLIP ViT B/16 CLIP ViT L/14 CLIP ViT B/16 CLIP ViT L/14

ID 59.70 66.63 71.02 50.08 58.39

OOD 53.00 59.86 64.57 48.36 55.51

% 11 10 9 3 5

H 56 63 68 49 57

Table 22 Foundation models as a backbone for DG algorithms in OOD-aware multi-source training

ERM CLIPood
Geographic Region Test DenseNet121 CLIP ViT B/16 CLIP ViT L/14 CLIP ViT B/16 CLIP ViT L/14

AS ID 65.29 71.89 75.07 57.72 62.34

OOD 48.84 59.89 64.32 50.53 55.75

AF ID 71.92 76.63 78.89 64.50 69.65

OOD 44.87 56.29 58.93 47.58 54.19

OC ID 64.81 74.83 77.46 64.66 70.18

OOD 56.83 67.15 70.46 60.99 67.70

EU ID 67.50 75.68 77.99 58.84 65.66

OOD 49.20 61.03 65.53 50.91 59.39

LAC ID 59.81 68.99 73.16 50.65 58.35

OOD 46.77 57.03 60.30 44.63 51.89

NA ID 67.10 75.18 78.16 58.40 64.77

OOD 53.53 63.03 66.16 51.96 59.35

Table 23 Comparison between a remote sensing MLLM, namely RemoteCLIP, and our fine-tuned versions, under multi-source setup, of ERM and
CLIPood. We used a backbone of CLIP ViT L/14 across all the methods.

Target
Setup Method AS AF OC EU LAC NA

Zero-shot RemoteCLIP (Liu et al., 2024) 24.4 27.2 33.6 25.4 20.4 26.5

Multi-Source Fine-Tuning CLIPood 56.4 56.1 68.5 59.8 52.1 59.7

ERM 64.7 57.9 70.7 66.1 61.7 67.4

remote sensing models are versatile, their performance may
degrade notably under domain shift.

5.7.6 Class-Wise Analysis of Single-Source DG

In order to further investigate the effects of the domain shift
experienced by the model when faced with OOD test data, in
this section,we provide a class-wise analysis of single-source
DG, where we trained an ERM model on EU and evaluated
its performance on both the ID and OOD test set, namely of
AF, separately. The impact of the domain shift is immedi-
ately visible in Figure 12, in which the model achieves high
performance, indicated through the strong diagonal in Fig-
ure 12a, on the ID test set as opposed to the case of an OOD
test set, shown in shown Figure 12b, where its performance

dropped significantly resulting in a high error rate. This is
evident for theOil and Gas Facility class for instance, where
themodel correctly predicted the ID samples 90% of the time
and failed to predict the OOD samples correctly. This obser-
vation holds for other classes such as Archaeological site,
Burial site, Barn, Flooded road, Fire station, and Tower. On
the contrary, the classes that are anticipated to have a large
similarity in both geographic regions in terms of the architec-
tural features, for example in the case of the Lighthouse class,
the model have maintained its high performance on the OOD
test set. Another interesting observation is made when pre-
dicting the Recreational Facility class, where the model was
able to identify 60% of the instances correctly and 36% mis-
classified as the class Stadium on ID test set. However, it had a
better performance on the OOD test set, with 84% of samples
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correctly classified. This behaviour could be attributed to the
mismatch in the granularity of the original class definitions
of fMoW discussed in Section 6.2.

5.7.7 The Influence of Urbanisation on Domain Shift: A Case
Study

As discussed in Section 1, the problem of spatial domain
shift in satellite imagery, such as DSGR, could be attributed
to various domain-specific factors, such as the uniqueness
of features of the target regions in terms of urbanisation,
development, architectural designs, land-cover, etc. As a case
study, we shed the light on the effect of urbanisation on the
performance of DL models when evaluated on ID versus
OOD data. Therefore, we consider the analysis from a multi-
dimensional perspective.

First, we mapped the coordinates of the data in DSGR
to their corresponding locations provided through Global
Human Settlement Layer (GHSL) 7 in order to categorise
whether each sample point is located within an urban or rural
area. We observed a consistency between the ratios of train-
ing to testing sets across urban and rural areas8.

Next, we evaluated the models’ performance on the new
testing sets, specifically designed todistinguishbetween rural
and urban areas across different regions. It is important to
note that the models analysed in the previous sections were
trained on satellite imagery covering both urban and rural
areas. To assess their accuracy across rural and urban areas,
we calculated the error ratio using the number of misclassi-
fication mistakes the model makes with respect to each area
individually. Table 24 presents a breakdown of these errors
across rural and urban areas.

We selected the NA region as a case study and present the
results as two separate heatmaps for urban and rural areas
respectively in Figure 13. Firstly, when analysing the ID per-
formance onNAacross urban versus rural areas, we observed
that the error rate increases from 27% on rural areas to 34%
when evaluated on samples from urban areas. Secondly, in
terms of OOD performance, we observed that the model
made more errors on urban samples than on rural ones across
the OOD testing sets. Additionally, we conducted a class-
wise analysis by comparing the confusion matrices across
areas for both ID and OOD testing sets and we found that the
performance on rural samples was significantly higher than
on urban samples for a class such as Tower.

This trend, where the model had a higher error rate on
images from urban areas compared to rural, was evident
across all the other regions, except for three outlier cases:
one case where models showed similar performance on both

7 https://human-settlement.emergency.copernicus.eu
8 The distribution of the training and testing splits with respect to urban
and rural areas can be found in Appendix D.

urban and rural areas when evaluated on ID data from AF,
and two cases where models trained on AS or AF and eval-
uated on OC. Furthermore, it is important to note that, apart
from the outlier cases, this general trend held regardless of
the distribution of urban and rural samples seen by themodels
during training.

A plausible explanation to the discrepancy between the
performance of a model on urban versus rural areas could
be attributed to the inherent characteristics of the satellite
imagery. For example, in rural areas, images typically contain
a single or few buildings with a relatively uniform back-
ground, such as a green landscape. In contrast, urban images
often featuremanybuildingswithin a single image, accompa-
nied by a more complex and cluttered background, resulting
in the model’s confusion between classes. This phenomenon
is illustrated in Figure 1, in which two samples from the
Single-Unit Residential class can be observed, one captured
from a rural area (top) and the other from an urban area (bot-
tom).

5.7.8 Coupling Domain Generalisation with Open-Set
Recognition

In open-world scenarios, also known as open-set settings,
some classes are not available during the training phase and
the objective is to develop a model that remains robust to
both seen and unseen classes. Therefore, in this section, we
explore this problem while coupled with domain shift to
analyse the impact of both new domains and classes on the
performance of DG techniques.

To create this setupwithDSGR,we followed the approach
outlined in open-set literature, such as CoCoOp (Zhou et
al., 2022b) and CLIPood (Shu et al., 2023), by randomly
splitting classes, using a 50:50 ratio, into seen (base) and
unseen (new) groups while ensuring consistency in classes
across regions and splits. This resulted in 21 seen classes
dedicated for training and validation, while 20 new classes
were reserved for evaluating the model’s generalisation. We
refer to this variant of DSGR as DSGR-OS9.

We evaluated two CLIPood variants with different back-
bone sizes, fine-tuned on the base classes, as it is the only
model in this study that supports open-set classification and
conducted the experiments in a similar fashion to the single-
source DG experiment mentioned above.

Table 25 presents the performance of CLIPood with CLIP
ViT L/14 on each region with respect to the base and new
class groups. Analysing the base setup independently, where
the model is evaluated on a smaller number of seen classes
in comparison to the original DSGR, we can observe that
domain shifts remain evident across geographical regions,
which is aligned with our previous observations. Addition-

9 The class distribution can be found in Appendix C.
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(a) Test: EU (ID) (b) Test: AF (OOD)

Fig. 12 Single-Source DG for ERM per-class performance when the model is trained and evaluated on ID versus OOD. The confusion matrices
are normalised and presented in percentages (%) with respect to the true labels

Table 24 Error (%) analysis of ERM with respect to urban and rural areas

Target
AS AF OC EU LAC NA

Source Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural

AS 43 22 58 47 54 58 66 51 64 48 56 55

AF 68 57 29 29 51 57 76 60 66 57 71 63

OC 84 73 89 81 50 40 80 70 79 71 69 62

EU 66 51 72 62 53 46 42 25 67 52 53 43

NA 63 53 65 54 50 46 74 55 45 29 63 55

LAC 71 59 78 69 47 45 62 47 70 57 34 27

ally, regardless of the backbone architecture, the model’s
performance is consistently better on ID than OOD under
the open-set scenario (new-classes) acrossAS, EU, LAC, and
NA. Whereas, this is not the case for AF or OC. This might
be due to the small size and lack of diversity in the training
set for those two regions in comparison to others. Another
limiting factor could be that, as noted in prior open-set stud-
ies, such as CoCoOp (Zhou et al., 2022b) and CLIPood (Shu
et al., 2023), the random division of base and new classes
does not ensure balanced class difficulty.

More broadly, the combination of open-set recognition
with domain generalisation remains an open area of research.

5.8 Summary of Findings

To conclude this section, we summarise the main findings of
our experiments as follows:
DSGR dataset reflects the complex and real-world chal-
lenges in comparison to standard DG datasets, where the
SOTA DG algorithms struggled to maintain a good perfor-
mance when evaluated on its different OOD test sets. This
observation was consistent among all the different experi-
ments and setups conducted in this section.
Training under spatial domain shift with multiple source
domains as opposed to a single source domain reduces the
performance drop caused by the generalisation gap.
Examining the impact of foundation models on DG
revealed that the classical ERM coupled with a foundation
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Fig. 13 A DG model trained on LAC and evaluated on ID and OOD regions with respect to urban (left) and rural (right) areas. The darker the
shade is, the higher error rate

Table 25 DSGR in an open-set
setting. We report single-source
DG accuracy (%) for CLIPood
ViT-L/14. Diagonal cells in base
show ID test set performance,
while in new, they represent
open-set performance on ID
regions. Off-diagonal cells show
performance on test sets for both
class groups across OOD
regions

Target
AS AF OC

Source Base New H Base New H Base New H

AS 79.8 ± 0.4 41.7 ± 1.9 55 65.7 ± 1.4 34.3 ± 1.5 45 74.0 ± 1.0 56.8 ± 0.5 64

AF 56.1 ± 1.0 36.8 ± 0.7 44 83.1 ± 0.8 31.4 ± 1.1 46 72.3 ± 1.0 51.5 ± 0.5 60

OC 52.2 ± 0.7 35.9 ± 0.2 43 45.0 ± 2.9 31.1 ± 1.4 37 80.4 ± 1.1 51.0 ± 0.3 62

EU 59.4 ± 0.5 35.7 ± 0.5 45 57.9 ± 1.9 36.0 ± 2.8 44 79.4 ± 0.2 54.3 ± 1.1 65

LAC 64.8 ± 0.1 37.5 ± 0.3 47 46.6 ± 0.1 36.9 ± 0.8 41 73.8 ± 0.8 58.8 ± 1.0 65

NA 56.2 ± 0.9 34.2 ± 0.8 43 47.3 ± 0.4 29.8 ± 1.6 37 77.9 ± 1.6 52.6 ± 0.2 63

EU LAC NA

Source Base New H Base New H Base New H

AS 67.0 ± 0.5 47.2 ± 0.6 55 59.4 ± 1.0 41.9 ± 0.8 49 67.3 ± 0.5 49.1 ± 0.5 57

AF 58.8 ± 0.5 44.9 ± 0.3 51 51.5 ± 0.1 38.8 ± 0.8 44 60.1 ± 0.4 46.5 ± 1.3 52

OC 61.5 ± 0.5 43.0 ± 0.3 51 47.8 ± 0.7 39.7 ± 0.4 43 63.9 ± 0.8 45.9 ± 0.4 53

EU 77.5 ± 0.0 47.3 ± 0.7 59 53.5 ± 0.9 39.5 ± 0.7 45 68.7 ± 0.5 49.4 ± 0.4 57

LAC 65.4 ± 0.3 47.5 ± 0.8 55 70.6 ± 0.9 42.7 ± 0.7 53 66.7 ± 0.3 48.5 ± 1.2 56

NA 68.2 ± 0.1 42.5 ± 0.7 52 55.3 ± 1.1 38.4 ± 1.1 45 78.1 ± 0.2 49.3 ± 0.3 60

model, such as CLIP, as its backbone architecture yields an
outstanding OOD performance in comparison to other SOTA
DG algorithms that were designed explicitly around founda-
tion models like CLIPood.
AnOOD-aware training scheme does not improve the over-
all performanceof theDGmodel.Wededuced that rather than
leaving one domain out for OOD validation, incorporating
it as part of the training domains would yield a better OOD
performance.

6 Discussion

6.1 Implications of DSGR in Real-World Applications

In designing DSGR, our aim was to create a DG dataset that
reflects scenarios in real-life applications and can be used to
assess the robustness of models to spatial domain shift prior

to their deployment. Therefore, as previously mentioned, we
opted to follow the geographic region categorisation defined
by the United Nations (Nations, 2022) in DSGR. Based on
our findings in Section 5, we recommend that practitioners
consider evaluating their DL based solutions for land-use
classification applications on DSGR in order to understand
their behaviour when deployed in real-life. Furthermore,
doing so can help in assessing and mitigating potential risks
that arise when DL models are deployed in new, and many
fault intolerant, environments.

The usage of DSGR extends beyond land-use classifica-
tion to other real-world application. This can be achieved
by learning a base-model that is good enough to generalise
across geographic regions and transferring this generalisation
capability through different types of learning, e.g, transfer
learning, to other applications. For instance, DSGR can be
used in critical infrastructure detection application,where the
model is trained on data from a specific domain, for exam-
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ple, region A and deployed in another OOD domain such as
continent B. Other real-world examples of applications that
can benefit from DSGR during the learning process are road
extraction, flood and disaster detection, urban planning and
development, among others.

6.2 Data Imbalance in DSGR

While data imbalance was not fully mitigated in DSGR, we
aimed to reduce its effect on the overall OOD performance
with our preprocessing approach, highlighted in Section 3.1.
Also, we have designed the single-source DG experiment
(Section 5.3) and the multi-source DG experiment (Section
5.4) to address this issue through the elimination of some
geographic regions during training. Since we considered the
average performance across all the different combinations
of domains used for training, where there might be data
imbalance between two specific domains, the OOD perfor-
mance drop was still captured regardless of the combination
of domains used in the experiments. This gave us an intuition
that the problem of spatial domain shift exists under such a
categorisation of domains.

Furthermore, we believe that incorporating additional
classes to DSGR would lead to a more diversified dataset.
For example, this enhancement can be achieved by includ-
ing samples from the classes dropped due to the scarcity
of data from these classes during the preprocessing stage
(Section 3.1), such as hospitals, impoverished settlements,
multi-unit residential, etc. Similarly, this goal canbe achieved
by adding new classes used in various real-world applica-
tions like farms, fisheries, wooded land, etc. Therefore, in
our futurework, we aim to enhanceDSGRby including these
classes, which are vital in evaluating spatial domain shifts in
land-use classification tasks.

In the same vein, another direction towards enhancing
DSGR is to address the imbalance in the granularity of the
class categorisation of fMoW (Christie et al., 2018). For
example, fMoW combines different recreational facilities,
such as a tennis court and a soccer fields, under a single class,
Recreational-Facilities. However, we believe these classes
should not be merged due to the differences in their fea-
tures. Whereas, the airport category in fMoW, for instance,
is split into multiple classes, Airport, Airport-Hanger and
Airport-Runway, resulting in a significant sample distribu-
tion imbalance between geographic regions.

Hence, it is important to note that the focus of this
work evolves around the issue of domain shift and does
not specifically approach to address data and class imbal-
ances. However, the problems of data and class imbalances
are orthogonal directions and we will investigate additional
methods to address them in our future work.

6.3 Performance of DGMethods on DSGR

While in the popular DomainBed (Gulrajani & Lopez-Paz,
2021) benchmark study the authors have shown that ERM
had a superior performance when evaluating on the standard
DG datasets, we have observed, through benchmarking the
SOTA DG algorithms on DSGR, that the standard ERM had
negligible difference, yet weak, performance in comparison
to other SOTADGalgorithms. Furthermore, our experiments
on DSGR revealed that the SOTA DG algorithms are in their
infancy in regards to their generalisability when it comes to
real-world scenarios, therefore, DG remains an open area of
research.

6.4 Limitations and FutureWork

Oneof themain limitations of thiswork is the inherited biases
of the original fMoW discussed in Section 6.2. While these
subtle biases might be beneficial to mimic a real-life dataset,
we aim in our future work to acquire more data samples from
underrepresented regions, such as Oceania andAfrica, which
will also aid in creating fine-grained class categorisations in
order to reduce the effects of these factors.

Another interesting direction for our upcoming work is
defining the DG problem for remote sensing applications
based on different categorisation of domains, such that,
in addition to defining domains as geographic regions, we
define them in terms of climate zones, poverty levels, world
bank regions, seasonal changes, etc.

Furthermore, we aim to expand our analysis on the effect
of domain shift, through proposing and investigating differ-
ent DG datasets, for a diversity of remote sensing tasks, such
as object detection, semantic segmentation, super-resolution
and regression.

7 Conclusion

In this paper, we provided insights on the effects of spatial
domain shift in land-use classification using our proposed
dataset, DSGR, which aims to measure the domain shift of
DL models on data samples gathered from different geo-
graphic regions. Our experiments showed that DL models
suffer significant performance dropswhen evaluated onOOD
data from an unseen geographic region. However, using
multiple source domains instead of a single source domain
during training improves the generalisability of DL mod-
els to OOD data. Furthermore, due to the effectiveness of
foundationmodels in improving the performance ofDLmod-
els, we explored their use as the backbone of the SOTA DG
algorithms. Our experiments revealed that integrating CLIP
with ERM, a decades-old algorithm, outperforms recent
SOTADG algorithms, including those directly built on CLIP.
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Finally, we deduced that having an explicit OOD validation
set during training does not further enhance the performance
of the DLmodels on OOD test data.We also noted some lim-
itations of our work due to the inherited biases of the original
fMoW dataset and highlighted future research directions to
mitigate them.
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Appendix A Class Distributions of the Geo-
graphic Regions in DSGR

In this section, similar to Figure 5, we show another visu-
alisation of cross-class sample distribution of the training
set for each geographic region, namely Asia (AS), Africa
(AF), Oceania (OC), Europe (EU), Latin America and the
Caribbean (LAC) and Northern America (NA), in Figure 14.

Table 26 Single-Source
Domain Generalisation accuracy
results on DSGR using IRM
where the diagonal cells indicate
the In-Distribution (ID) test
performance of each model

Target
Source AS AF OC EU LAC NA

AS 65.0 ± 0.4 42.1 ± 1.5 39.8 ± 2.7 40.5 ± 0.8 38.5 ± 0.7 41.0 ± 1.4

AF 32.8 ± 0.9 70.2 ± 1.0 36.3 ± 1.4 29.8 ± 0.7 31.2 ± 0.3 29.1 ± 0.5

OC 22.8 ± 0.7 18.7 ± 0.7 57.2 ± 1.7 30.7 ± 1.6 26.1 ± 1.7 32.9 ± 0.6

EU 39.1 ± 1.0 27.1 ± 1.9 47.0 ± 5.3 68.4 ± 0.5 33.3 ± 0.9 50.1 ± 0.7

LAC 37.7 ± 1.3 35.0 ± 2.2 46.8 ± 2.4 34.7 ± 0.3 57.2 ± 1.1 37.7 ± 0.6

NA 32.1 ± 1.0 22.1 ± 1.1 47.1 ± 1.7 45.8 ± 0.7 30.0 ± 1.6 67.6 ± 0.5

Table 27 Single-Source
Domain Generalisation accuracy
results on DSGR using Deep
CORAL where the diagonal
cells indicate the In-Distribution
(ID) test performance of each
model.

Target
Source AS AF OC EU LAC NA

AS 65.6 ± 0.5 43.6 ± 1.8 41.8 ± 2.7 41.3 ± 0.8 39.1 ± 1.8 41.9 ± 0.5

AF 33.7 ± 0.3 69.5 ± 1.9 38.7 ± 3.9 30.9 ± 0.9 30.3 ± 1.4 31.2 ± 0.4

OC 25.4 ± 0.8 21.5 ± 4.3 58.0 ± 2.5 32.6 ± 0.6 27.0 ± 1.3 35.2 ± 1.1

EU 41.6 ± 1.0 30.2 ± 1.9 50.3 ± 2.4 70.0 ± 0.2 37.0 ± 0.7 51.6 ± 0.7

LAC 38.3 ± 2.2 34.1 ± 3.0 46.6 ± 1.3 36.2 ± 1.2 58.5 ± 1.0 38.1 ± 1.5

NA 32.6 ± 1.0 22.2 ± 0.9 48.9 ± 1.3 46.8 ± 1.1 31.0 ± 0.7 68.2 ± 0.1

Table 28 Single-Source
Domain Generalisation accuracy
results on DSGR using group
DRO where the diagonal cells
indicate the In-Distribution (ID)
test performance of each model.

Target
Source AS AF OC EU LAC NA

AS 64.3 ± 0.1 43.1 ± 0.6 43.1 ± 1.3 41.4 ± 0.5 37.8 ± 1.2 41.7 ± 0.6

AF 32.8 ± 0.7 69.6 ± 1.1 34.5 ± 2.4 29.2 ± 0.9 29.9 ± 0.8 28.9 ± 1.8

OC 23.2 ± 1.9 17.5 ± 0.5 56.1 ± 4.1 29.3 ± 1.6 23.9 ± 1.0 33.3 ± 1.7

EU 40.2 ± 0.4 26.5 ± 1.1 50.1 ± 3.0 68.2 ± 0.3 34.5 ± 1.4 50.1 ± 0.6

LAC 37.5 ± 0.2 35.2 ± 1.2 47.1 ± 0.9 35.4 ± 1.0 57.0 ± 1.7 37.2 ± 1.1

NA 32.1 ± 0.9 22.7 ± 3.7 45.4 ± 0.7 44.8 ± 0.5 32.3 ± 2.2 66.4 ± 0.3

Table 29 Single-Source
Domain Generalisation accuracy
results on DSGR using CLIPood
where the diagonal cells indicate
the In-Distribution (ID) test
performance of each model.

Target
Source AS AF OC EU LAC NA

AS 61.9 ± 0.2 48.3 ± 1.4 51.9 ± 0.7 47.7 ± 0.2 43.1 ± 0.3 49.3 ± 0.3

AF 43.1 ± 0.4 70.4 ± 0.4 47.9 ± 0.3 42.0 ± 0.4 38.8 ± 0.4 44.1 ± 0.2

OC 37.2 ± 0.4 38.5 ± 0.2 60.9 ± 0.5 42.3 ± 0.3 36.3 ± 0.4 44.6 ± 0.4

EU 46.4 ± 0.5 46.4 ± 1.7 59.9 ± 0.0 63.2 ± 0.3 41.8 ± 0.2 52.1 ± 0.6

LAC 47.2 ± 0.3 38.7 ± 0.8 55.1 ± 0.9 43.7 ± 0.1 52.8 ± 0.8 46.8 ± 0.3

NA 43.9 ± 0.2 37.9 ± 0.9 58.8 ± 0.8 51.7 ± 0.3 43.1 ± 0.6 64.9 ± 0.3
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Appendix B Additional Experimental Results
and Analyses

B.1 Single-Source Domain Generalisation

In this section, following the observations found in Sec-
tion 5.3, we present below the experimental results for IRM,
Deep CORAL, group DRO and CLIPood in Tables 26, 27,
28 and 29 respectively.

The results illustrated in Tables 26, 27, 28 and 29 are
aligned with our findings in Section 5.3, where a notable
generalisation gap between ID and OOD performance of the
model trained using a single source domain.

B. 2 Multi-source Domain Generalisation

Following the observations found in Section 5.4, we present
below the experimental results for IRM, Deep CORAL,
group DRO and CLIPood in Tables 30, 31, 32 and 33
respectively.

Furthermore, for each algorithm, we provide in Tables
34, 35, 36 and 37 a comparison between the ID and OOD
test results betweenSingle-Source andMulti-SourceDomain
Generalisation on DSGR.

Similar to the observations found in Section 5.4, it can
be deduced by comparing the results of the ID test sets in
single-source DG with the results of ID test sets in multi-
source DG, that in the majority of the cases for all the four
algorithms, there is an improvement in the overall perfor-
mance of the model. Likewise, when testing on the OOD test
set in single-source DG versus multi-source DG where the
average performance drop of the models in multi-source DG
on theOOD testing set is noticeably lower than that of the cor-
responding OOD testing set in single-source DG. However,
in this case, the improvement in the performance is reflected
in all the different cases.

B. 3 OOD-AwareMulti-Source Domain Generalisation

In this section, we present the details and breakdown results
of the OOD-aware multi-source DG experiment conducted
in Section 5.6. Each of the five algorithms consist of a set
of experiments. Each of these experiments is is defined as
indicated in Table 15 in Section 5.6.

We trained a total of 30 models per algorithm for each of
the three different seeds. This resulted in 450 trained models.
We ran the evaluation experiments 2700 times to ensure that
we cover all the different combinations. The breakdown of
results of these experiments for ERM, IRM, Deep CORAL,
groupDRO andCLIPood are illustrated in Tables 38, 39, 40,
41 and 42 respectively. Moreover, for IRM, Deep CORAL,
group DRO and CLIPood we provide in Tables 43, 44, 45
and 46 a comparison between the ID and OOD test results
betweenOOD-awaremulti-sourceDG andmulti-sourceDG.

Appendix C Class Distribution of DSGR-OS

We provide, in Table 47, the class distribution of DSGR-OS.

Appendix DUrbanisationDistributionAcross
Splits in DSGR

Table 48 presents the distribution of the training and testing
splits with respect to urban and rural areas.
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Table 30 Multi-Source Domain
Generalisation accuracy results
on DSGR using IRM. The
boldface cells indicate the
performance of each model on
the OOD test set

Target
Source AS AF OC EU LAC NA

D{C−AS} 50.7 ± 0.3 72.9 ± 0.7 67.4 ± 1.3 67.7 ± 0.2 60.9 ± 1.4 67.7 ± 0.4

D{C−AF} 66.6 ± 0.7 47.3 ± 1.7 64.8 ± 1.9 68.2 ± 0.4 61.5 ± 0.5 68.0 ± 0.8

D{C−OC} 67.6 ± 1.3 73.3 ± 1.3 59.4 ± 1.9 67.9 ± 0.4 61.5 ± 0.9 67.8 ± 1.1

D{C−EU} 65.5 ± 0.4 72.8 ± 1.0 67.4 ± 1.5 51.4 ± 0.6 60.4 ± 0.9 66.3 ± 0.4

D{C−LAC} 66.6 ± 0.2 74.2 ± 1.5 65.0 ± 4.0 67.8 ± 0.6 48.6 ± 1.0 68.2 ± 0.6

D{C−NA} 66.5 ± 1.0 72.9 ± 1.8 65.4 ± 2.2 67.8 ± 0.5 61.1 ± 0.6 56.3 ± 0.5

Table 31 Multi-Source Domain
Generalisation accuracy results
on DSGR using Deep CORAL.
The boldface cells indicate the
performance of each model on
the OOD test set

Target
Source AS AF OC EU LAC NA

D{C−AS} 50.4 ± 0.8 75.0 ± 1.8 68.5 ± 1.0 67.3 ± 1.3 62.9 ± 0.4 69.1 ± 0.2

D{C−AF} 68.2 ± 0.5 49.4 ± 3.3 68.3 ± 1.2 68.1 ± 0.5 63.5 ± 0.6 69.4 ± 0.6

D{C−OC} 68.2 ± 0.2 75.5 ± 0.8 58.0 ± 2.4 68.5 ± 0.9 64.4 ± 0.2 70.1 ± 0.4

D{C−EU} 66.4 ± 0.8 75.4 ± 0.3 69.1 ± 2.6 52.1 ± 1.3 61.8 ± 1.0 67.9 ± 1.0

D{C−LAC} 67.6 ± 0.5 74.7 ± 0.5 68.1 ± 2.0 69.1 ± 0.2 47.4 ± 2.5 69.3 ± 0.5

D{C−NA} 67.2 ± 0.5 75.4 ± 0.3 68.8 ± 1.6 68.1 ± 0.6 62.1 ± 0.6 56.0 ± 0.4

Table 32 Multi-Source Domain
Generalisation accuracy results
on DSGR using group DRO.
The boldface cells indicate the
performance of each model on
the OOD test set

Target
Source AS AF OC EU LAC NA

D{C−AS} 50.0 ± 1.0 69.3 ± 0.9 66.1 ± 1.6 68.7 ± 0.5 58.5 ± 1.3 67.7 ± 0.8

D{C−AF} 66.9 ± 0.5 49.4 ± 1.3 63.5 ± 2.2 69.1 ± 0.1 59.9 ± 1.0 67.6 ± 0.5

D{C−OC} 66.9 ± 0.4 69.7 ± 1.4 59.5 ± 3.2 69.5 ± 0.4 60.4 ± 0.2 68.0 ± 0.9

D{C−EU} 65.3 ± 1.4 69.9 ± 0.9 64.7 ± 0.9 51.7 ± 0.6 60.4 ± 0.3 66.8 ± 0.3

D{C−LAC} 67.3 ± 0.6 69.7 ± 0.6 64.7 ± 3.3 69.1 ± 0.6 47.7 ± 1.5 67.3 ± 0.7

D{C−NA} 66.0 ± 0.8 70.1 ± 0.8 63.6 ± 0.9 68.1 ± 0.1 59.1 ± 0.6 55.3 ± 0.7

Table 33 Multi-Source Domain
Generalisation accuracy results
on DSGR using CLIPood. The
boldface cells indicate the
performance of each model on
the OOD test set

Target
Source AS AF OC EU LAC NA

D{C−AS} 51.1 ± 0.2 63.3 ± 0.5 64.1 ± 0.8 58.3 ± 0.3 49.7 ± 0.1 57.7 ± 0.4

D{C−AF} 56.0 ± 0.7 45.7 ± 2.4 63.4 ± 1.2 57.5 ± 0.5 49.6 ± 0.8 56.8 ± 0.2

D{C−OC} 56.3 ± 0.4 62.4 ± 0.4 61.2 ± 0.8 57.4 ± 0.1 48.7 ± 0.8 56.5 ± 0.9

D{C−EU} 57.5 ± 0.3 64.5 ± 0.2 64.5 ± 1.0 51.0 ± 0.5 50.8 ± 0.2 58.5 ± 0.3

D{C−LAC} 56.3 ± 0.2 64.2 ± 0.6 64.0 ± 1.2 58.4 ± 0.3 45.0 ± 0.5 57.3 ± 0.6

D{C−NA} 57.1 ± 0.2 63.2 ± 1.8 64.9 ± 0.5 58.2 ± 0.2 49.5 ± 0.7 52.2 ± 0.4
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Table 34 Comparison results of
IRM: Multi-Source vs.
Single-Source Domain
Generalisation on DSGR

Target
AS AF OC EU LAC NA

ID % Increase 2.4 4.4 15.4 −0.7 6.9 0.1

OOD % Increase 54 63 37 42 53 48

Table 35 Comparison results of
Deep CORAL: Multi-Source vs.
Single-Source Domain
Generalisation on DSGR

Target
AS AF OC EU LAC NA

ID % Increase 2.9 8.2 18.3 −2.6 7.5 1.4

OOD % Increase 47 63 28 39 44 41

Table 36 Comparison results of
group DRO: Multi-Source vs.
Single-Source Domain
Generalisation on DSGR

Target
AS AF OC EU LAC NA

ID % Increase 3.3 0.2 15 1.0 4.6 1.6

OOD % Increase 51 70 35 43 51 45

Table 37 Comparison results of
CLIPood: Multi-Source vs.
Single-Source Domain
Generalisation on DSGR

Target
AS AF OC EU LAC NA

ID % Increase −8.4 −9.8 5.4 −8.3 −5.9 −11.7

OOD % Increase 17.3 8.9 11.8 12.2 10.7 10.2
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Table 38 OOD-aware
Multi-Source Domain
Generalisation accuracy results
of ERM

Target
Sources AS AF OC EU LAC NA

DAS \ AF 48.1 ± 1.6 41.1 ± 1.6 62.9 ± 0.1 67.7 ± 0.7 60.5 ± 1.0 67.6 ± 0.9

DAS \ OC 49.9 ± 0.3 73.2 ± 0.7 57.9 ± 1.0 67.0 ± 1.0 60.1 ± 1.3 67.1 ± 0.5

DAS \ EU 46.7 ± 1.4 72.9 ± 0.8 65.6 ± 1.7 48.7 ± 0.6 59.6 ± 1.6 65.2 ± 1.5

DAS \ LAC 49.3 ± 1.1 72.0 ± 0.2 65.8 ± 1.5 67.3 ± 1.1 46.1 ± 1.7 67.1 ± 1.4

DAS \ NA 50.2 ± 0.7 71.8 ± 1.9 65.0 ± 0.7 67.4 ± 0.7 59.4 ± 0.7 54.8 ± 0.8

DAF \ AS 48.0 ± 0.4 37.6 ± 2.6 65.7 ± 0.7 67.3 ± 1.0 60.3 ± 1.3 67.7 ± 1.0

DAF \ OC 65.8 ± 2.0 48.2 ± 2.6 58.5 ± 1.0 67.5 ± 0.3 59.9 ± 1.0 68.1 ± 0.2

DAF \ EU 65.0 ± 2.1 45.4 ± 0.8 66.0 ± 1.6 52.0 ± 1.1 60.2 ± 0.5 66.1 ± 0.5

DAF \ LAC 66.9 ± 0.2 48.4 ± 1.3 64.3 ± 0.3 68.3 ± 0.9 48.3 ± 0.6 68.0 ± 0.8

DAF \ NA 66.0 ± 0.9 44.8 ± 2.1 65.1 ± 1.5 67.4 ± 0.8 60.4 ± 0.9 56.2 ± 1.2

DOC \ AS 51.1 ± 0.4 71.8 ± 2.1 57.5 ± 1.2 67.2 ± 0.6 60.1 ± 0.9 67.9 ± 0.3

DOC \ AF 66.5 ± 1.3 51.6 ± 1.1 60.0 ± 1.9 68.0 ± 0.8 60.6 ± 1.4 68.3 ± 1.3

DOC \ EU 65.2 ± 1.1 73.2 ± 1.4 56.7 ± 2.2 52.5 ± 0.8 59.6 ± 1.4 66.8 ± 0.4

DOC \ LAC 66.8 ± 0.3 73.1 ± 0.9 53.7 ± 0.6 68.3 ± 0.2 48.4 ± 0.8 68.1 ± 0.6

DOC \ NA 65.9 ± 0.3 73.1 ± 0.5 56.2 ± 1.6 67.9 ± 0.8 60.6 ± 0.6 56.2 ± 0.7

DEU \ AS 45.4 ± 1.7 69.9 ± 3.9 65.0 ± 2.6 47.8 ± 0.2 59.1 ± 0.9 65.6 ± 0.9

DEU \ AF 65.6 ± 0.7 48.5 ± 1.0 67.0 ± 0.5 51.4 ± 0.6 60.1 ± 1.0 66.9 ± 1.1

DEU \ OC 63.3 ± 2.8 71.3 ± 4.3 54.4 ± 0.5 50.1 ± 0.9 58.8 ± 0.6 65.7 ± 0.5

DEU \ LAC 64.4 ± 1.1 72.2 ± 1.7 65.7 ± 1.3 51.0 ± 1.5 47.1 ± 1.7 66.4 ± 1.6

DEU \ NA 64.5 ± 0.3 71.5 ± 0.1 64.6 ± 0.8 45.7 ± 1.0 59.2 ± 1.2 50.1 ± 1.1

DLAC \ AS 48.3 ± 0.7 69.2 ± 4.6 62.7 ± 2.3 66.8 ± 0.4 45.5 ± 0.7 67.1 ± 0.5

DLAC \ AF 65.5 ± 0.3 51.1 ± 0.9 64.2 ± 0.9 68.1 ± 0.3 47.4 ± 1.0 67.5 ± 1.1

DLAC \ OC 64.7 ± 2.0 71.4 ± 3.9 53.5 ± 0.4 68.3 ± 1.1 47.0 ± 1.7 68.1 ± 1.0

DLAC \ EU 64.6 ± 1.0 73.5 ± 0.5 64.7 ± 1.4 51.7 ± 0.8 47.2 ± 1.3 66.7 ± 1.1

DLAC \ NA 65.7 ± 1.0 72.1 ± 0.2 64.0 ± 2.2 67.4 ± 0.7 46.7 ± 0.4 55.5 ± 0.1

DNA \ AS 50.0 ± 0.3 70.7 ± 1.6 63.9 ± 1.3 66.6 ± 0.7 58.6 ± 1.5 53.0 ± 1.1

DNA \ AF 65.9 ± 0.8 48.7 ± 1.6 64.8 ± 1.4 67.7 ± 0.9 59.7 ± 0.7 54.8 ± 1.0

DNA \ OC 64.4 ± 1.2 71.6 ± 2.4 56.1 ± 0.5 66.8 ± 1.9 59.6 ± 0.3 55.7 ± 0.8

DNA \ EU 63.4 ± 1.2 71.9 ± 0.9 65.4 ± 1.0 46.3 ± 0.9 59.6 ± 0.5 49.3 ± 1.4

DNA \ LAC 65.8 ± 1.5 72.0 ± 1.2 63.8 ± 0.3 67.2 ± 1.0 48.0 ± 2.0 54.9 ± 0.8

Table 39 OOD-aware
Multi-Source Domain
Generalisation accuracy results
of IRM

Target
Sources AS AF OC EU LAC NA

DAS \ AF 48.3 ± 0.1 39.7 ± 0.5 66.8 ± 2.5 68.2 ± 0.1 60.7 ± 0.2 67.9 ± 0.9

DAS \ OC 50.4 ± 1.3 72.9 ± 0.7 58.0 ± 3.7 67.2 ± 0.4 59.4 ± 1.4 67.5 ± 0.5

DAS \ EU 46.5 ± 0.8 72.6 ± 1.4 65.5 ± 0.8 49.1 ± 0.3 59.8 ± 1.1 66.2 ± 0.6

DAS \ LAC 48.0 ± 0.6 72.3 ± 0.7 66.5 ± 1.1 68.0 ± 0.1 45.4 ± 0.8 67.5 ± 0.9

DAS \ NA 50.8 ± 1.1 72.1 ± 0.8 66.3 ± 2.1 67.5 ± 0.3 59.6 ± 0.7 54.7 ± 0.5

DAF \ AS 49.3 ± 0.4 38.8 ± 0.8 64.7 ± 1.0 67.7 ± 0.9 61.1 ± 0.7 62.3 ± 9.4

DAF \ OC 66.0 ± 0.8 47.9 ± 1.1 58.8 ± 2.2 66.4 ± 2.2 61.7 ± 1.0 67.4 ± 1.3

DAF \ EU 66.0 ± 0.8 47.0 ± 1.6 66.2 ± 1.9 52.2 ± 1.4 61.5 ± 0.2 66.1 ± 0.6
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Table 39 continued Target
Sources AS AF OC EU LAC NA

DAF \ LAC 67.0 ± 0.3 48.2 ± 1.6 63.6 ± 3.2 68.0 ± 0.6 48.4 ± 1.8 67.5 ± 1.3

DAF \ NA 66.5 ± 0.2 47.4 ± 0.7 66.2 ± 0.8 68.0 ± 0.6 61.2 ± 0.7 59.9 ± 6.7

DOC \ AS 52.0 ± 0.7 72.1 ± 1.8 58.5 ± 1.7 67.8 ± 0.8 61.0 ± 0.8 68.2 ± 1.0

DOC \ AF 65.7 ± 1.7 50.8 ± 1.6 57.4 ± 0.7 66.8 ± 2.9 60.7 ± 1.8 66.8 ± 1.7

DOC \ EU 65.8 ± 1.0 74.8 ± 0.2 55.7 ± 1.6 51.7 ± 0.8 60.9 ± 0.0 67.3 ± 0.5

DOC \ LAC 66.5 ± 0.3 72.8 ± 1.0 53.9 ± 2.3 68.3 ± 0.3 48.3 ± 1.1 68.0 ± 0.3

DOC \ NA 67.2 ± 0.5 73.3 ± 1.5 58.0 ± 1.7 68.0 ± 0.4 60.8 ± 0.6 55.8 ± 0.2

DEU \ AS 47.7 ± 0.6 71.8 ± 1.1 65.2 ± 1.2 48.5 ± 0.7 60.0 ± 1.0 66.5 ± 0.3

DEU \ AF 65.8 ± 0.4 47.7 ± 0.9 67.0 ± 0.7 50.7 ± 0.6 60.4 ± 0.6 66.6 ± 0.1

DEU \ OC 65.5 ± 0.4 73.6 ± 0.9 57.2 ± 1.5 51.3 ± 0.3 60.0 ± 0.5 66.4 ± 0.9

DEU \ LAC 66.1 ± 0.8 75.2 ± 0.5 65.7 ± 1.2 51.2 ± 0.7 47.7 ± 0.4 66.2 ± 0.8

DEU \ NA 62.9 ± 2.4 72.2 ± 0.7 64.8 ± 0.3 46.3 ± 0.8 59.0 ± 0.8 50.0 ± 0.1

DLAC \ AS 49.1 ± 0.5 72.7 ± 0.8 65.6 ± 1.2 67.9 ± 0.6 44.7 ± 0.5 67.9 ± 0.3

DLAC \ AF 66.6 ± 1.4 49.7 ± 1.3 63.6 ± 1.1 67.7 ± 0.3 46.2 ± 0.9 67.8 ± 0.8

DLAC \ OC 66.5 ± 0.6 73.6 ± 0.5 53.6 ± 0.6 68.5 ± 0.7 47.8 ± 0.9 68.3 ± 0.3

DLAC \ EU 65.2 ± 0.9 73.1 ± 1.1 65.4 ± 0.9 52.4 ± 0.5 47.0 ± 0.2 67.1 ± 0.6

DLAC \ NA 66.6 ± 1.1 73.5 ± 0.9 63.7 ± 1.9 67.8 ± 0.2 46.5 ± 1.5 55.3 ± 0.6

DNA \ AS 50.8 ± 1.5 72.2 ± 0.5 66.0 ± 0.9 67.0 ± 0.2 59.6 ± 1.0 54.5 ± 0.6

DNA \ AF 66.1 ± 0.5 48.9 ± 0.7 64.7 ± 1.0 67.7 ± 0.7 61.1 ± 1.3 55.0 ± 0.2

DNA \ OC 66.8 ± 1.2 72.0 ± 0.6 56.2 ± 0.8 67.5 ± 0.3 59.8 ± 1.0 54.5 ± 0.3

DNA \ EU 65.1 ± 0.4 70.8 ± 0.7 64.8 ± 1.8 46.9 ± 0.7 59.7 ± 0.7 48.6 ± 1.0

DNA \ LAC 66.2 ± 0.3 72.6 ± 1.3 62.9 ± 1.4 67.5 ± 0.4 46.9 ± 0.5 55.0 ± 0.1

Table 40 OOD-aware
Multi-Source Domain
Generalisation accuracy results
of Deep CORAL

Target
Sources AS AF OC EU LAC NA

DAS \ AF 47.6 ± 1.4 39.5 ± 2.2 67.6 ± 0.5 68.0 ± 1.8 61.8 ± 0.8 69.6 ± 0.2

DAS \ OC 50.8 ± 1.2 75.1 ± 1.9 59.3 ± 2.0 68.0 ± 1.3 62.2 ± 0.8 69.1 ± 0.5

DAS \ EU 48.0 ± 0.7 74.3 ± 1.1 67.2 ± 1.0 49.9 ± 0.7 61.6 ± 0.6 67.2 ± 0.2

DAS \ LAC 49.6 ± 0.9 74.2 ± 1.0 68.1 ± 2.4 67.7 ± 1.9 45.6 ± 0.9 67.7 ± 0.9

DAS \ NA 47.9 ± 1.5 73.6 ± 1.1 68.2 ± 1.2 67.1 ± 0.7 61.5 ± 1.3 55.4 ± 0.8

DAF \ AS 48.9 ± 0.3 40.0 ± 1.8 66.8 ± 2.4 68.3 ± 0.2 63.1 ± 1.2 69.7 ± 0.5

DAF \ OC 68.0 ± 0.9 48.6 ± 3.9 60.0 ± 0.6 68.1 ± 1.1 63.3 ± 1.4 69.2 ± 1.1

DAF \ EU 66.7 ± 0.9 48.8 ± 1.7 68.8 ± 0.7 53.2 ± 0.7 62.3 ± 1.6 68.3 ± 0.2

DAF \ LAC 67.7 ± 0.6 46.3 ± 1.3 67.8 ± 1.2 68.1 ± 1.7 48.5 ± 1.7 69.0 ± 0.7

DAF \ NA 67.9 ± 1.6 47.3 ± 1.2 65.3 ± 0.5 68.7 ± 0.6 61.9 ± 0.4 56.4 ± 0.6

DOC \ AS 50.4 ± 1.3 74.9 ± 2.9 59.3 ± 2.0 67.7 ± 1.7 62.9 ± 0.1 68.6 ± 1.2

DOC \ AF 68.4 ± 0.2 52.0 ± 1.5 60.0 ± 3.3 68.8 ± 0.8 62.7 ± 0.2 69.3 ± 0.8

DOC \ EU 67.0 ± 0.8 76.2 ± 0.4 57.8 ± 1.5 53.1 ± 0.9 62.1 ± 0.1 68.0 ± 0.4

DOC \ LAC 66.9 ± 0.3 74.1 ± 1.5 57.5 ± 0.4 67.7 ± 1.6 49.2 ± 1.6 68.6 ± 0.2

DOC \ NA 68.3 ± 0.7 75.4 ± 2.1 54.5 ± 2.3 68.0 ± 1.0 62.4 ± 0.5 56.3 ± 1.2

DEU \ AS 48.9 ± 0.1 74.2 ± 1.0 68.2 ± 1.9 49.1 ± 0.8 62.4 ± 0.8 67.4 ± 1.1

DEU \ AF 66.1 ± 1.0 50.6 ± 1.9 69.0 ± 0.3 52.4 ± 0.7 61.4 ± 0.7 66.9 ± 0.6

DEU \ OC 66.5 ± 1.6 74.8 ± 0.7 58.0 ± 1.2 52.5 ± 1.3 62.4 ± 0.9 67.7 ± 1.2

DEU \ LAC 65.2 ± 0.4 74.4 ± 1.5 68.6 ± 0.5 51.5 ± 0.5 48.5 ± 1.1 67.4 ± 0.1
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Table 40 continued Target
Sources AS AF OC EU LAC NA

DEU \ NA 65.9 ± 0.6 74.1 ± 0.9 67.3 ± 2.1 46.6 ± 0.2 61.2 ± 0.8 50.4 ± 0.4

DLAC \ AS 49.8 ± 0.6 73.2 ± 0.9 67.8 ± 1.7 67.9 ± 1.5 44.4 ± 1.3 68.7 ± 0.8

DLAC \ AF 68.0 ± 1.5 52.4 ± 1.5 66.7 ± 2.3 68.1 ± 1.4 46.6 ± 1.9 69.1 ± 0.9

DLAC \ OC 67.3 ± 0.9 75.7 ± 1.2 57.7 ± 1.6 68.9 ± 1.4 48.7 ± 1.3 69.9 ± 0.3

DLAC \ EU 65.3 ± 0.4 73.5 ± 0.9 68.1 ± 1.8 51.7 ± 0.1 47.1 ± 0.9 67.8 ± 0.5

DLAC \ NA 66.6 ± 1.0 74.6 ± 1.2 67.6 ± 0.8 67.7 ± 0.8 46.6 ± 0.3 56.7 ± 0.3

DNA \ AS 50.2 ± 1.1 73.5 ± 0.9 66.3 ± 1.6 67.0 ± 1.3 61.9 ± 1.9 53.4 ± 0.7

DNA \ AF 67.5 ± 1.2 50.0 ± 1.0 66.3 ± 1.6 67.9 ± 1.5 62.6 ± 1.3 56.1 ± 0.1

DNA \ OC 68.5 ± 0.5 75.7 ± 1.2 56.5 ± 0.6 68.9 ± 0.1 62.3 ± 0.7 55.4 ± 0.3

DNA \ EU 65.8 ± 0.5 73.7 ± 0.5 67.3 ± 1.7 46.9 ± 0.8 62.5 ± 0.8 50.8 ± 0.7

DNA \ LAC 66.5 ± 1.5 74.0 ± 1.4 66.8 ± 0.7 66.7 ± 2.1 47.4 ± 1.5 55.1 ± 1.3

Table 41 OOD-aware
Multi-Source Domain
Generalisation accuracy results
of group DRO

Target
Sources AS AF OC EU LAC NA

DAS \ AF 48.4 ± 0.4 40.1 ± 2.2 63.2 ± 2.8 67.3 ± 2.0 58.1 ± 1.0 67.1 ± 1.1

DAS \ OC 49.4 ± 0.5 69.3 ± 1.8 58.0 ± 2.1 68.2 ± 0.3 57.7 ± 0.5 67.2 ± 0.8

DAS \ EU 46.2 ± 1.1 70.7 ± 1.7 65.4 ± 0.3 49.6 ± 0.6 59.3 ± 1.2 66.7 ± 1.3

DAS \ LAC 47.4 ± 1.6 70.8 ± 1.5 62.5 ± 1.3 67.6 ± 0.8 45.6 ± 1.8 67.5 ± 0.6

DAS \ NA 49.2 ± 0.4 69.6 ± 1.0 63.0 ± 1.8 68.1 ± 0.2 59.1 ± 0.2 54.7 ± 1.0

DAF \ AS 49.8 ± 0.6 36.7 ± 1.3 62.2 ± 1.4 67.8 ± 1.1 60.1 ± 0.3 67.1 ± 0.7

DAF \ OC 66.5 ± 0.6 48.1 ± 2.5 57.1 ± 2.7 69.1 ± 0.3 59.5 ± 0.2 67.4 ± 0.8

DAF \ EU 65.5 ± 0.8 48.1 ± 3.1 64.1 ± 2.3 51.7 ± 0.3 60.4 ± 1.9 67.0 ± 0.3

DAF \ LAC 66.7 ± 1.0 45.4 ± 1.6 63.2 ± 1.0 68.8 ± 0.5 47.0 ± 0.8 67.2 ± 0.8

DAF \ NA 66.0 ± 0.6 46.2 ± 2.3 63.7 ± 1.9 68.7 ± 0.6 58.9 ± 0.9 56.4 ± 1.2

DOC \ AS 51.6 ± 0.9 70.5 ± 0.8 56.1 ± 0.8 68.5 ± 0.4 58.5 ± 1.2 67.4 ± 0.9

DOC \ AF 66.2 ± 0.5 50.7 ± 2.7 56.9 ± 1.3 68.8 ± 0.1 60.1 ± 0.8 67.5 ± 0.3

DOC \ EU 65.7 ± 0.9 70.4 ± 0.1 56.9 ± 2.0 52.3 ± 0.1 59.4 ± 0.7 66.9 ± 0.8

DOC \ LAC 66.7 ± 0.6 70.9 ± 0.3 52.6 ± 0.6 69.2 ± 0.3 47.5 ± 0.7 67.9 ± 0.3

DOC \ NA 65.6 ± 0.6 71.1 ± 0.2 53.4 ± 1.9 68.1 ± 1.0 58.4 ± 1.2 56.2 ± 0.5

DEU \ AS 47.8 ± 0.5 69.9 ± 1.2 64.8 ± 1.1 48.5 ± 1.4 60.4 ± 1.1 67.2 ± 0.3

DEU \ AF 65.7 ± 0.5 49.8 ± 1.6 65.5 ± 1.4 50.7 ± 0.5 59.7 ± 1.4 67.0 ± 0.3

DEU \ OC 65.5 ± 0.7 71.3 ± 1.6 56.0 ± 1.2 51.1 ± 0.9 60.1 ± 0.3 66.9 ± 0.6

DEU \ LAC 64.4 ± 0.8 72.4 ± 1.3 63.6 ± 0.9 50.2 ± 0.9 47.5 ± 1.4 66.4 ± 0.5

DEU \ NA 65.1 ± 1.2 70.6 ± 0.8 64.5 ± 0.6 46.0 ± 1.1 59.7 ± 1.1 49.4 ± 0.4

DLAC \ AS 48.9 ± 0.3 70.2 ± 1.5 61.9 ± 1.9 68.3 ± 0.2 45.4 ± 0.9 67.9 ± 0.4

DLAC \ AF 65.9 ± 1.2 48.9 ± 2.2 61.4 ± 0.9 68.6 ± 0.6 45.8 ± 0.4 67.7 ± 0.7

DLAC \ OC 66.7 ± 0.5 71.1 ± 2.2 54.5 ± 0.9 68.7 ± 1.4 47.0 ± 1.5 67.1 ± 1.7

DLAC \ EU 66.1 ± 0.5 72.0 ± 1.3 65.3 ± 1.4 52.0 ± 0.9 46.4 ± 0.8 66.9 ± 0.2

DLAC \ NA 64.8 ± 0.4 70.4 ± 0.8 61.9 ± 0.4 67.7 ± 0.3 45.4 ± 1.3 55.0 ± 0.8

DNA \ AS 49.4 ± 0.4 68.5 ± 1.5 62.4 ± 1.0 67.7 ± 0.6 58.8 ± 0.9 53.5 ± 1.7

DNA \ AF 65.5 ± 0.1 48.7 ± 0.4 62.8 ± 2.7 68.1 ± 1.1 57.6 ± 0.4 55.4 ± 1.1

DNA \ OC 65.3 ± 0.1 69.9 ± 1.1 54.8 ± 1.6 67.7 ± 0.5 58.7 ± 1.0 55.7 ± 0.3

DNA \ EU 64.8 ± 0.2 70.0 ± 0.2 63.8 ± 1.6 46.7 ± 0.1 58.6 ± 0.9 48.5 ± 0.9

DNA \ LAC 65.8 ± 0.4 69.5 ± 0.4 62.2 ± 1.6 67.5 ± 0.8 45.8 ± 0.6 55.0 ± 0.6
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Table 42 OOD-aware
Multi-Source Domain
Generalisation accuracy results
of CLIPood

Target
Sources AS AF OC EU LAC NA

DAS \ AF 50.7 ± 0.4 43.4 ± 0.0 65.0 ± 0.3 59.1 ± 0.4 50.5 ± 0.1 58.5 ± 0.8

DAS \ OC 50.8 ± 0.7 62.9 ± 0.3 60.9 ± 1.0 58.3 ± 0.3 49.4 ± 0.2 57.7 ± 0.5

DAS \ EU 51.5 ± 0.1 66.6 ± 0.3 65.9 ± 0.5 51.2 ± 0.3 52.4 ± 0.5 60.8 ± 0.3

DAS \ LAC 48.7 ± 0.4 64.9 ± 0.9 64.2 ± 0.9 59.0 ± 0.3 43.4 ± 0.6 58.2 ± 0.1

DAS \ NA 51.1 ± 0.2 64.8 ± 0.1 64.0 ± 0.3 59.5 ± 0.3 50.5 ± 0.2 52.4 ± 0.5

DAF \ AS 50.7 ± 0.4 43.4 ± 0.0 65.0 ± 0.3 59.1 ± 0.4 50.5 ± 0.1 58.5 ± 0.8

DAF \ OC 56.3 ± 0.2 48.6 ± 2.0 61.3 ± 1.3 58.0 ± 0.1 49.1 ± 0.3 56.9 ± 0.4

DAF \ EU 58.3 ± 0.2 46.7 ± 1.0 65.1 ± 0.2 51.3 ± 0.1 51.3 ± 0.4 59.1 ± 0.4

DAF \ LAC 57.3 ± 0.2 51.0 ± 1.6 63.8 ± 0.8 58.9 ± 0.2 45.9 ± 0.4 57.5 ± 0.2

DAF \ NA 57.6 ± 0.3 48.1 ± 0.8 64.3 ± 0.9 59.3 ± 0.1 50.6 ± 0.3 52.0 ± 0.4

DOC \ AS 50.8 ± 0.7 62.9 ± 0.3 60.9 ± 1.0 58.3 ± 0.3 49.4 ± 0.2 57.7 ± 0.5

DOC \ AF 56.2 ± 0.2 48.7 ± 2.0 61.3 ± 1.3 58.0 ± 0.1 49.2 ± 0.4 57.0 ± 0.4

DOC \ EU 58.0 ± 0.2 64.4 ± 1.3 59.9 ± 0.1 51.0 ± 0.3 50.4 ± 0.3 58.7 ± 0.3

DOC \ LAC 56.7 ± 0.2 63.6 ± 0.2 60.6 ± 0.3 58.5 ± 0.1 44.2 ± 0.3 57.5 ± 0.0

DOC \ NA 57.1 ± 0.1 63.1 ± 0.4 62.2 ± 0.8 58.4 ± 0.2 49.3 ± 0.1 51.9 ± 0.4

DEU \ AS 51.5 ± 0.1 66.6 ± 0.3 65.9 ± 0.5 51.2 ± 0.3 52.4 ± 0.5 60.8 ± 0.3

DEU \ AF 58.3 ± 0.3 46.8 ± 1.0 65.1 ± 0.2 51.3 ± 0.1 51.3 ± 0.4 59.1 ± 0.4

DEU \ OC 58.0 ± 0.2 64.4 ± 1.3 59.9 ± 0.1 51.0 ± 0.3 50.4 ± 0.3 58.7 ± 0.3

DEU \ LAC 58.1 ± 1.2 64.6 ± 1.8 65.1 ± 1.1 51.3 ± 0.6 45.2 ± 1.4 59.0 ± 0.3

DEU \ NA 60.1 ± 0.6 66.0 ± 0.3 65.4 ± 0.9 49.6 ± 0.9 53.0 ± 0.9 51.3 ± 0.5

DLAC \ AS 48.7 ± 0.4 64.9 ± 0.9 64.2 ± 0.9 59.0 ± 0.3 43.4 ± 0.6 58.2 ± 0.1

DLAC \ AF 57.3 ± 0.2 50.9 ± 1.5 63.8 ± 0.8 58.8 ± 0.2 45.9 ± 0.4 57.5 ± 0.2

DLAC \ OC 56.7 ± 0.2 63.6 ± 0.2 60.6 ± 0.3 58.5 ± 0.1 44.2 ± 0.3 57.5 ± 0.0

DLAC \ EU 58.1 ± 1.2 64.7 ± 2.0 65.0 ± 1.0 51.3 ± 0.6 45.1 ± 1.3 59.0 ± 0.2

DLAC \ NA 57.8 ± 0.3 63.8 ± 0.3 63.8 ± 1.0 59.5 ± 0.0 44.6 ± 0.5 52.1 ± 0.2

DNA \ AS 51.1 ± 0.2 64.9 ± 0.0 64.0 ± 0.3 59.5 ± 0.3 50.4 ± 0.2 52.5 ± 0.5

DNA \ AF 57.6 ± 0.3 48.1 ± 0.8 64.3 ± 0.9 59.3 ± 0.1 50.6 ± 0.3 52.0 ± 0.4

DNA \ OC 57.1 ± 0.1 63.1 ± 0.4 62.2 ± 0.8 58.4 ± 0.2 49.3 ± 0.1 51.9 ± 0.4

DNA \ EU 60.0 ± 0.6 66.1 ± 0.4 65.4 ± 1.0 49.6 ± 0.9 53.1 ± 0.9 51.3 ± 0.5

DNA \ LAC 57.8 ± 0.3 63.8 ± 0.3 63.8 ± 1.0 59.5 ± 0.0 44.6 ± 0.5 52.1 ± 0.2

Table 43 Comparison results of
IRM: OOD-aware Multi-Source
vs. Multi-Source Domain
Generalisation on DSGR

Target
AS AF OC EU LAC NA

ID % Increase −0.8 −0.6 −1.1 −0.3 −1.2 −1.0

OOD % Increase −3.7 −3.0 −4.6 −3.5 −4.5 −5.0

Table 44 Comparison results of
Deep CORAL: OOD-aware
Multi-Source vs. Multi-Source
Domain Generalisation

Target
AS AF OC EU LAC NA

ID % Increase −0.8 −1.0 −1.6 −0.4 −1.1 −1.0

OOD % Increase −3.3 −6.4 −0.2 −3.2 −1.5 −3.3
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Table 45 Comparison results of
group DRO: OOD-aware
Multi-Source vs. Multi-Source
Domain Generalisation

Target
AS AF OC EU LAC NA

ID % Increase −1.1 1.1 −1.8 −1.0 −0.8 −0.4

OOD % Increase −3.7 −9.1 −7.2 −4.6 −3.6 −3.0

Table 46 Comparison results of
CLIPood: OOD-aware
Multi-Source vs. Multi-Source
Domain Generalisation

Target
AS AF OC EU LAC NA

ID % Increase 1.9 1.5 0.8 1.5 2.0 1.8

OOD % Increase −1.1 4.2 −0.3 −0.2 −0.8 −0.4

Table 47 Geographic
region-wise data partitions used
in all experiments

Split AS AF OC EU LAC NA

Training 33, 732 14, 660 5, 486 60, 361 23, 42 42, 183

Validation 4, 922 2, 027 893 9, 154 3, 234 59, 88

Base Testing 4, 934 2, 215 863 8, 847 3, 311 63, 56

New Testing 2, 330 668 533 5, 797 2, 141 3, 273

Table 48 Sample-wise distribution of urban and rural in DSGR

Region Urbanisation Training (%) Testing (%)

AS Urban 59 60

Rural 41 40

AF Urban 63 65

Rural 37 35

OC Urban 50 58

Rural 50 42

EU Urban 36 37

Rural 64 63

LAC Urban 62 65

Rural 38 35

NA Urban 45 48

Rural 55 52
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