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Abstract

Background: The importance of sleep is paramount to health. Insufficient sleep can reduce physical, emotional, and mental
well-being and can lead to a multitude of health complications among people with chronic conditions. Physical activity and sleep
are highly interrelated health behaviors. Our physical activity during the day (ie, awake time) influences our quality of sleep, and
vice versa. The current popularity of wearables for tracking physical activity and sleep, including actigraphy devices, can foster
the development of new advanced data analytics. This can help to develop new electronic health (eHealth) applications and
provide more insights into sleep science.
Objective: The objective of this study was to evaluate the feasibility of predicting sleep quality (ie, poor or adequate sleep
efficiency) given the physical activity wearable data during awake time. In this study, we focused on predicting good or poor
sleep efficiency as an indicator of sleep quality.
Methods: Actigraphy sensors are wearable medical devices used to study sleep and physical activity patterns. The dataset used
in our experiments contained the complete actigraphy data from a subset of 92 adolescents over 1 full week. Physical activity
data during awake time was used to create predictive models for sleep quality, in particular, poor or good sleep efficiency. The
physical activity data from sleep time was used for the evaluation. We compared the predictive performance of traditional logistic
regression with more advanced deep learning methods: multilayer perceptron (MLP), convolutional neural network (CNN), simple
Elman-type recurrent neural network (RNN), long short-term memory (LSTM-RNN), and a time-batched version of LSTM-RNN
(TB-LSTM).
Results: Deep learning models were able to predict the quality of sleep (ie, poor or good sleep efficiency) based on wearable
data from awake periods. More specifically, the deep learning methods performed better than traditional logistic regression. “CNN
had the highest specificity and sensitivity, and an overall area under the receiver operating characteristic (ROC) curve (AUC) of
0.9449, which was 46% better as compared with traditional logistic regression (0.6463).
Conclusions: Deep learning methods can predict the quality of sleep based on actigraphy data from awake periods. These
predictive models can be an important tool for sleep research and to improve eHealth solutions for sleep.
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Introduction

Background
The importance of sleep is paramount to health and performance.
Insufficient sleep can impede physical, emotional, and mental
well-being [1,2] and can lead to a multitude of health
complications such as insulin resistance [3-5], high blood
pressure [6], cardiovascular disease [7,8], a compromised
immune or metabolic system [9,10], mood disorders (such as
depression or anxiety) [11,12], and decreased cognitive function
for memory and judgment [13-15].

There are many indicators of sleep quality, an important one
being sleep efficiency. Sleep efficiency is a metric that takes
into consideration the time spent asleep, the time it takes to fall
asleep, and the time asleep but with disturbance (ie,
awakenings). Poor sleep efficiency can lead to sleep deprivation,
which is found to be a major health risk with links to diseases
such as diabetes and obesity [16]. Also, sleep behavior has been
found to impact adolescent health [17-19]. Recent systematic
reviews have shown the relevance of physical activity to sleep,
including sleep efficiency [20-22]. Although the relationship
between physical activity and sleep is not yet fully understood,
it is thought to be a strong and complex correlation contributing
to multiple lifestyle diseases such as type 2 diabetes mellitus
and obesity [20-22]. However, the underlying mechanism
between physical activity and sleep is not yet fully understood.

Role of Wearables in Sleep Health and eHealth
There are many research tools to study the link between physical
activity and sleep, including standardized questionnaires,
actigraphy sensors, and polysomnography (PSG). All of these
methods have different clinical indications (eg, diagnosis of
different sleep disorders) [23]. For example, PSG is considered
the “gold standard” for sleep medicine, as it involves the use of
multiple sensors during sleep such as electroencephalogram,
motion sensors, breathing sensors, SpO2(oxygen saturation),
and so forth. These sensors monitor and observe a patient
overnight [24] and can be used for diagnosing different sleep
disorders. The elaborate nature of PSG means that it is generally
limited to one overnight observation. Even the portable
solutions, which permit PSG assessment in the patient’s home,
are complex to perform and not without limitations [25,26].

To better understand the impact of daily physical activity on
sleep behavior, new tools are needed. Sleep researchers in the
early 1990s developed a technique called actigraphy to study
sleep interactions using wearable devices [27]. Although
actigraphy traditionally uses wearable devices to evaluate the
sleep period of a patient, it can also be used to observe physical
activity. Actigraphy has become a widely used tool, as it has
been found to be much more reliable than subjective or
self-reported sleep diaries and behavior logs [28]. Patients wear
the device for a period of time as they continue their daily
routines. The technique has been especially influential for large

cohort studies where PSG is not feasible [29]. Moreover,
actigraphy allows for the continuous longitudinal monitoring
of a patient. This is particularly impactful for the study of
diseases such as chronic obstructive pulmonary disease where
sleep disturbances can be a predictor of exacerbation of the
disease [30]. Current approaches to the analysis of actigraphy
data involve sleep experts performing a number of steps
manually. This is a bottleneck, and hence there may be troves
of actigraphy data left unanalyzed.

Furthermore, there are hundreds of consumer-grade physical
activity and sleep tracking devices (eg, Fitbit) collecting motion
data similarly to actigraphy devices. These consumer devices
are being used by millions of people collecting huge amounts
of data. Some devices even allow the collection of data for very
long periods (eg, several months), as they require only an
occasional need for battery recharge (ie, Garmin VivoFit).
Recent studies have found that these consumer-grade devices
can sometimes have similar precision to clinical-grade
actigraphy sensors [31]. There are successful examples of the
integration of physical activity wearable data into eHealth
tailored applications [32], including smart-watch health
applications [33] that can collect physical activity and sleep
data directly from the watch.

Objective
As previously noted, physical activity and sleep are interrelated.
In this study, we tested the feasibility of predicting poor or good
sleep efficiency based on physical activity data from the awake
periods from a wearable device (ie, actigraphy). We took a
detour from classical methods and proposed deep learning
approaches to modeling the relationship between sleep and
physical activity. The importance of this research is two-fold.

First, since our approach can be used in cases where sleep sensor
data is not available, our models can be used in the early
detection of potential low sleep efficiency. This is a common
problem with consumer-grade wearable devices, as users might
not wear them during the night (battery recharging, sensors
embedded in smart jewelry, and so forth).

Second, our study was focused on advanced deep learning
methods. Traditional prediction models applied to activity raw
accelerometer data (eg, logistic regression) suffer from at least
2 key limitations: (1) They are not robust enough to learn useful
patterns from noisy raw accelerometer output. As a result,
existing methods for classification and analysis of physical
activity rely on extracting higher-level features that can be fed
into prediction models [34]. This process often requires domain
expertise and can be time consuming. (2) Traditional methods
do not exploit task labels for feature construction, and thus can
be limited in their ability to learn task-specific features. Deep
learning has the advantage that it is robust to raw noisy data,
and can learn, automatically, higher level abstract features by
passing raw input signals through nonlinear hidden layers while
also optimizing on the target prediction tasks. We leveraged
this characteristic by building models using a range of deep
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learning methods on raw accelerometer data. This reduced the
need for data preprocessing and feature space construction and
simplified the overall workflow for clinical practice and sleep
researchers.

Methods

Overview
The methodology of this study involved several steps: (1) the
collection of wearable data with regards to physical activity and
sleep patterns, (2) data processing and representation, (3) data
modeling, and (4) performance evaluation. The following
subsections explain each of these steps.

Data Collection
The deidentified data used in this study were collected by Weill
Cornell Medical College-Qatar for a research study called
Qatar’s Ultimate Education for Sleep in Teenagers. The aim of
the study was to determine different sleep patterns in adolescents
residing in Qatar and how these related to body weight status.
The institutional review board (IRB) approval was initially
obtained by the joint IRB for Hamad Medical Corporation and
Weill Cornell Medical College. The selected cohort was chosen
from adolescents attending 1 of the 2 high schools and registered

in grades 7-11. The dataset used contained complete actigraphy
data from a subset of 92 adolescents over 1 week. There were
322 total sleep instances: 102 from boys and 220 from girls.

After agreeing to participate in the study, the adolescent
participants were provided with an ActiGraph GT3X+ device,
placed on their nondominant wrist, and were instructed to wear
it at all times for 7 consecutive days and nights. The ActiGraph
GT3X+, shown in Figure 1, is a clinical-grade wearable device
that samples a user’s activity at 30-100 Hz (we used 30 Hz in
this study). The effectiveness of this device has been
successfully validated against clinical polysomnography [35].
The participants were instructed not to remove the
water-resistant device at any time. We used the manufacturer’s
software (ActiLife version 6; available from ActiGraph, LLC)
to export the data. Although the device is triaxial, our methods
used the vertical axis only.

The subjective self-reported sleep diaries were collected, but
they were not considered for the study, since actigraphy data
provides a more objective measurement of physical activity and
sleep patterns. Sadeh’s and American Academy of Sleep
Medicine sleep definitions were used in this interpretation
[27,36,37]. For calculating the sleep efficiency score, we
considered each individual sleeping period as sleep.

Figure 1. ActiGraph Gt3X+.

Data Processing and Representation

Sleep Quality Definitions
In a person’s activity time series, that is, the continuous data
collected from a wearable device, there are moments when an
individual is awake and when they are asleep. The latter is
referred to as the sleep period. The boundary from awake time
to the sleep period is called the sleep onset time, and the
boundary from sleep period to awake time is referred to as the
sleep awakening time. The period of time between the
self-reported time to bed and the sleep onset time is called the
latency.

To measure sleep quality we determined sleep efficiency (see
Figure 2), which is the ratio of total minutes asleep to total
minutes in bed. Those achieving a sleep efficiency score of
≥85% are thought to be good-quality sleepers, and those with
a score of <85% are thought to have poor-quality sleep [38].

Total minutes in bed represents the amount of time that an
individual spends asleep as well as the amount of time the
individual takes to fall asleep, that is, latency. Total sleep time
represents the amount of time that an individual spends asleep,
less the amount of time the person awakens. This is calculated
by subtracting the wake after sleep onset (WASO) from the
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duration of the sleep period. WASO is the sum of all moments of wakefulness lasting longer than 5 minutes (see Figure 3).

Figure 2. Sleep efficiency equation as defined by sleep specialists.

Figure 3. The adapted wake after sleep onset calculation.

Data Processing
The data collected from the actigraphy device contained triaxial
accelerometer movement. Previous research has identified that
for devices worn on the wrist, the vertical axis from
accelerometer data is the most indicative of physical activity
[39]. Consequently, we switched to 1-dimensional input for a
simpler and less noisy modeling (ie, each row in our dataset
contained a 1-dimensional time series of vertical axis
accelerometer data).

The raw accelerometer data was aggregated into
minute-by-minute epochs using a script written in R version
3.3.1, a statistical Open Source computing software developed
as part of the R Project. In this dataset, the time series contains
activity data during both the awake time and the sleep time (as
shown in Figure 4). We used the awake time to form the
prediction (ie, as the model input) and the sleep time to
determine the ground truth of sleep quality. Sleep quality (good
or poor) was determined from the sleep time actigraphy data,
and each time series was labeled as such.

As mentioned earlier, sleep onset time and sleep awakening
time are metrics that form the boundary of the sleep period [36].
We interpreted and expanded these values for accelerometer
data according to Sadeh’s actigraphy definitions [37].

Sleep onset time is traditionally defined as the first minute of
15 continuous minutes of sleep after a self-reported bedtime,

and the sleep awakening time is the last minute of 15 continuous
minutes of sleep that is followed by 30 minutes of movement
[37]. To automate this interpretation directly from the
accelerometer output, we developed the concept of candidate
rows. Candidate rows denote moments (or designated epochs)
in time with a lack of triaxial movement and require a
subsequent pass to determine whether the individual is asleep
or awake. Each row is iterated upon and run through a state
machine, as illustrated in Figure 5. Since there is no self-reported
bedtime, we inferred it as the beginning of sedentary behavior
immediately preceding and adjacent to the start of the sleep
period. The duration of this sedentary time is the latency.

The handling of nonwearing time is very important and should
be minimized wherever possible. The device was water-resistant
and did not require recharging during the time period the
participants were instructed to wear it. If a participant removed
the device, the triaxial accelerometer would record zero values
for the time it was not worn. Natural human behavior makes
micro-movements that are sensed by the accelerometer even
during sleep, and so periods with a continuous lack of movement
indicate device removal. In other words, during the time the
device was not worn, our algorithm would identify candidate
rows for the entire period, denote them as sleep time, and score
the sleep as having a perfect sleep efficiency of 1. Alternatively,
the ActiLife software includes an algorithm to remove nonwear
periods from physical activity calculations [40].

Figure 4. Example of sleep definitions on accelerometer data of an actigraphy device.
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Figure 5. State machine diagram explaining the designation of sleep or awake time periods.

Models for Sleep Quality
As explained in more detail below, in this study we explored
the use of deep learning methods to predict sleep quality based
on actigraphy data. We compared the results of our deep learning
models to those of logistic regression, a standard statistical
method. In this section, we explain how each model was built.
The models used in our study were as follows:

• Logistic regression, a nondeep learning model
• Multi-layer perceptrons (MLPs), a deep learning model
• Convolutional neural network (CNN), a deep learning model
• Recurrent neural networks (RNN), a deep learning model
• Long short-term memory (LSTM) RNN, a deep learning

model
• Time-batched long short-term memory (TB-LSTM) RNN,

a deep learning model

For logistic regression, we fed the input signals directly into the
output layer for prediction. In contrast, for the deep learning
models, we passed the inputs through one or more hidden layers
before they were fed to the output layer for prediction. Each
hidden unit in the hidden layers used a nonlinear activation
function. In our study, we experimented with different hidden
layer units using rectified linear unit as our activation function.

Data Partitioning
To train our models without over-fitting and test their
performance afterward, we created a random partitioning of the
dataset. Each time series was assigned to a partition randomly
while maintaining an even class distribution of the target
variable, sleep quality. The data were split with a 70%-15%-15%
ratio for training, testing, and validation sets, respectively.

Input and Output of the Models
The input of the models were time series vectors, X=(x1, · · · ,
xT), representing the physical activity of a person’s awake time.
Each vector corresponded to a continuous period of awake time,
and so for each individual, there might be multiple such vectors
over the 7 days. Each xT represented the value of the vertical
axis at time t.

The output of the model was a binary classification decision
between good and poor sleep quality based on sleep efficiency

(%). These classifications corresponded to the sleep efficiency
definitions as described earlier. In addition to the binary
decision, the model also gave its confidence (a score between
0.0 and 1.0) in that decision.

Training the Models
To be able to predict, we first trained the models on the training
dataset. We used an online training algorithm RMSprop [41],
which relied on a number of preset parameters:

• Mini-batch size: how many training instances to consider
at one time.

• Learning rate: the rate at which parameters are updated.
• Max epoch: maximum number of iterations over the training

set.
• Dropout ratio: ratio of hidden units to turn off in each

mini-batch training.

The training algorithm minimizes the cross-entropy between
the predicted distribution and the actual (gold) target labels. To
avoid over-fitting, we used early stopping based on the model’s
performance on the validation set. In particular, we evaluated
the model after every epoch on the validation set and stopped
when its accuracy went down. To reduce the cross-entropy
between the predicted distributions and the target distributions,
RMSprop was used setting the maximum number of epochs to
50 as suggested by the authors [41].

Logistic Regression (a Nondeep Learning Model)
As a baseline, we used logistic regression (LR) to predict the
sleep quality. LR is a generalized linear classification model
that does not have any hidden layers. For the LR, the raw input
signals X are directly fed to the output layer for prediction
without any nonlinear hidden layer transformations. The optimal
setting for logistic regression (LR) was with a mini-batch size
of 5 and a dropout ratio of 0.5.

Multilayer Perceptrons (a Deep Learning Model)
MLPs, also known as feed-forward neural networks, are the
simplest models in the deep learning family. They have one or
more hidden layers. In fact, MLP without any hidden layers is
equivalent to logistic regression. In MLP, all the units of a
hidden layer are fully connected to the units in the previous
layer. The best parameter configuration for MLP was with a
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mini-batch size of 20, a dropout ratio of 0.1, and a hidden layer
size of 15.

Convolutional Neural Network (a Deep Learning Model)
CNNs are a more complex type of deep learning method that
includes repetitive filters or kernels applied to local time slots,
thereby composing a high level of abstract features. This
operation is called convolution. After convolution, a
max-pooling operation is performed to select the most significant
abstract features. This design of CNNs yields fewer parameters
than its fully connected counterpart (MLP), and therefore
generalizes well for target prediction tasks. For its best
configuration, we used 25 hidden nodes, filter length of 5 and
pooling length of 4, 5 mini-batch size, and 0.0 dropout ratio.

Recurrent Neural Networks (a Deep Learning Models)
RNNs compose abstract features by processing activity measures
in an awake time sequentially, at each time step combining the
current input with the previous hidden state. RNNs create
internal states by remembering the previous hidden layer, which
allows them to exhibit dynamic temporal behavior. These
features make RNNs a good deep learning method for temporal
series. RNNs performed best with a mini-batch size of 5, a
dropout ratio of 0.1 and a hidden layer size of 75. To avoid
over-fitting, we used a technique based on dropout of hidden
units and early stopping based on the loss on the development
set [42].

Long Short-Term Memory (a Deep Learning Model)
A subtype of RNN, LSTM uses specifically designed memory
blocks as units in the recurrent layer to capture longer-range
dependencies. The optimal configuration values for LSTM were
a mini batch size of 5, dropout ratio of 0.5, and hidden layer
size of 100.

Time-Batched Long Short-Term Memory (a Deep
Learning Model)
To further improve our implementation of LSTM, we
constructed batches of time steps by merging accelerometer
measures over time steps. We referred to this version of the
model as TB-LSTM. The configuration values for TB-LSTM
were mini-batch size of 5, dropout ratio of 0.5, and hidden layer
size of 100.

Performance Evaluation
For the evaluation of the performance of the different models,
we reported on several well-known metrics such as accuracy,
precision, recall, F1-score, and area under the receiver operating
characteristic (ROC) curve (AUC). These metrics are commonly
used in data mining and clinical decision support systems.

Accuracy
It is computed as the proportion of correct predictions, both
positive and negative (sum of true positives and true negatives
divided by the number of all instances in the dataset).

Precision
It is the fraction of the number of true positive predictions to
the number of all positive predictions (ie, true positives divided
by the sum of true positives and false positives). In our case,
precision described what percentage of the time the model
predicted “good-quality sleep” correctly. Note that precision is
also known as positive predictive value.

Specificity
It is the fraction of the number of true negative predictions to
the actual number of negative instances in the dataset (ie, true
negatives divided by the sum of true negatives and false
positives). In our case, specificity referred to the percentage of
the correctly predicted “poor-quality sleep” to the total number
of “poor-quality sleep” instances in the dataset. Note that
specificity is also known as true negative rate.

Recall or Sensitivity
It is the fraction of the number of true positive predictions to
the actual number of positive instances in the dataset (ie, true
positives divided by the sum of true positives and false
negatives). In our case, recall referred to the percentage of the
correctly predicted “good-quality sleep” to the total number of
“good-quality sleep” instances in the dataset. Note that recall
is also known as true positive rate or sensitivity.

F1-Score
There is usually an inverse relationship between precision and
recall. That is, it is possible to increase the precision at the cost
of decreasing the recall, or vice versa. Therefore, it is more
useful to combine them into a single measure such as F1 score,
which computes the harmonic mean of precision and recall.

Area Under the ROC Curve
It represents the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative
instance. Hence, AUC defines an effective and combined
measure of sensitivity and specificity (which are often inversely
related, just like precision and recall) for assessing inherent
validity of a classifier.

Results

Comparison Between Deep Learning and Logistic
Regression
As shown in Table 1 and Figure 6, the performance of the
logistic regression in the metrics previously explained performed
worse than the models based on deep learning. “Only the simple
RNN performed worse than logistic regression in both F1-score
(harmonic mean of precision and recall) and accuracy.
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Table 1. Results on raw accelerometer data.

AccuracyRecallPrecisionF1-ScoreAUCaData models

0.73210.97140.70830.81930.6463LRb

0.89290.88570.93940.91180.9449MLPc

0.92860.97140.91890.94440.9456CNNd

0.66070.91430.66670.77110.7143RNNe

0.78570.97140.75560.85000.8531LSTMf-RNN

0.89291.0000.85370.92110.9714TB-LSTMg

aAUC: Area under receiver operating characteristic (ROC) curve.
bLR: logistic regression.
cMLP: Multilayer perceptrons.
dCNN: convolutional neural networks.
eRNN: recurrent neural networks.
fLSTM: long short-term memory.
gTB-LSTM: time-batched LSTM.

As shown in Table 1, the AUC of the logistic regression model
was low. The AUC value for LR was 0.6463, which was close
to 0.5 (equivalent to a random prediction). This showed the
limitation of classical models in analyzing raw accelerometry.

In contrast, all the AUC values for the deep learning models
were better with a range from 0.7143 to 0.9714, TB-LSTM
being the best performer and RNN, the worst. Time-batched
LSTM, CNN, and MLP performed the best with AUC scores
showing an improvement over LR by 50%, 46%, and 46%,
respectively.

Figure 6. Receiver operating characteristic (ROC) curves for each model’s prediction of sleep efficiency.
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Comparison Between Deep Learning Models
Upon comparing the deep learning neural network models, we
noticed that CNN yielded slight improvement over MLP in
AUC (0.07% absolute), but more in F1 (3.57%) and accuracy
(4.00%). These improvements could be attributed to the time-
invariant convolution-pooling operations of the CNN model to
pick key local patterns, which generalized well for small training
data. The F1-score improved by 12% for time-batched LSTM,
by 15% for CNN, and by 11% for MLP. The accuracy improved
by 22% for time-batched LSTM, by 27% for CNN, and by 22%
for MLP.

A comparison of the RNN models revealed that LSTM
outperformed simple RNN by a wide margin; 19%, 10%, and
19% in AUC, F1, and accuracy, respectively. These gains over
simple RNNs could be attributed to the specially designed gates
of LSTMs that could capture long-range dependencies between
physical activities in the sequences.

However, this is not surprising. Both simple and LSTM RNNs
operate on sequences, where each time step comprises only one
activity value. This often results in very long sequences. As
mentioned earlier, in this setting RNNs cannot compose
higher-level features effectively because of low-dimensional
input at each time step, and also suffer from vanishing gradient
problems due to lengthy sequences.

Our solution to surmount this problem was to use a time-batched
input to LSTM. When we compared the results of our
time-batched LSTM (TB-LSTM) with those of MLP and CNN,
we found that TB-LSTM outperformed both MLP and CNN in
AUC by 3%; in fact, it had the highest AUC score. It achieved
better F1 score than MLP (1%), but worse than CNN (–2%).
When we observed their precision and recall values, we found

that TB-LSTM had a very high recall but lower precision, which
meant that it tended to predict more goods than gold standard.
For the same reason, its accuracy was also lower than that of
CNN.

Discussion

Principal Findings
In our study, we focused on the prediction of poor versus good
sleep efficiency. That is a simple, but important, problem, as
sleep efficiency has been found to be a crucial sleep parameter
with important health consequences [38,43,44]. Furthermore,
we did not quantify in our prediction the overall sleep efficiency
but simply the differentiation between two classes (poor versus
good sleep efficiency). This classification is consequently not
an indicator of sleep patterns, but the prediction of a sleep
quality parameter that might indicate a potential sleep problem.

As in prediction or diagnostic problems, our results need to be
discussed in terms of sensitivity and specificity (see Table 2).
The deep learning methods of CNN and TB-LSTM were the
best performers overall. Their sensitivity (0.97 and 1,
respectively) showed that these models were able to detect nearly
all the cases of “good-quality sleep,” meaning that in a tool for
screening potential sleep problems these models will be able to
detect easily people with normal sleep quality. Often high
sensitivity comes at the price of low specificity (ie, failing to
identify negative cases, or true negative error). This was the
case of logistic regression, which had a high sensitivity but a
specificity of 0.3, meaning that in such models many “poor
sleeps” would have been wrongly classified as good sleep. This
is very important, since misidentifying poor sleep cases can
lead to underdiagnosis of problematic sleep.

Table 2. Sensitivity and specificity results.

SpecificitySensitivity or recallData models

0.3330.9714LRa

0.90480.8857MLPb

0.85710.9714CNNc

0.23810.9143RNNd

0.47620.9714LSTMe

0.71431.000TB-LSTMf

aLR: logistic regression.
bMLP: multilayer perceptrons.
cCNN: convolutional neural networks.
dRNN: recurrent neural networks.
eLSTM: long short-term memory.
fTB-LSTM: time-batched LSTM.

The sensitivity (also known as recall) and specificity of each of
the models are reported in Table 2. The high sensitivity values
of each of the models indicate that deep learning has a strong
capability of correctly identifying individuals with good sleep
patterns from their preceding awake activity. The specificity is
high for TB-LSTM, MLP, and CNN, indicating that these

models were also able to successfully distinguish those with
poor sleep patterns.

Relevance of Findings
Previous algorithms, such as by Sadeh et al [27,37], do not focus
on the prediction of sleep quality based on physical activity
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during awake time, but rather on prediction of sleep quality
based on accelerometer data during the sleep periods. The
objective of those studies was the validation of the actigraphy
data compared with PSG. Consequently, the objectives and
findings of those studies cannot be compared with our study.

There are several data analytics areas relevant to our work. To
our knowledge, our research was the first one looking into the
use of deep learning for the study of actigraphy data related to
physical activity and sleep. Previous research on the use of deep
learning for sleep science has been focused on PSG data [45,46].
In other application areas, deep learning has been used for
human activity recognition [47,48] which is a similar technical
problem. In a previous study, we combined human recognition
of actigraphy data with other machine learning algorithms, but
not deep learning [49].

Impact in Sleep Science
Sleep insufficiency is highly prevalent in contemporary society,
and has been shown to influence energy balance by altering
metabolic hormone regulation. Consequently, health researchers
are exploring the impact of sleep and physical activity on many
health conditions. A major bottleneck for this research is that
current approaches for studying actigraphy data require intensive
manual work by human experts. Furthermore, huge datasets of
actigraphy data are emerging from health research, including
the study of sleep disorder patients, healthy populations, and
epidemiological studies. Furthermore, millions of consumers
are buying wearables that incorporate activity sensors. This
burst of human activity data is a great opportunity for health
research, but to achieve this paradigm shift, it is necessary to
develop new algorithms and tools to analyze this type of data.

As explained in the results, our findings supported the feasibility
of using physical activity data to predict the quality of sleep in
terms of sleep efficiency. These findings were by no means
aiming to substitute well-studied algorithms and methods for
studying sleep and physical activity data, such as the methods
described by Sadeh [37]. Improved algorithms, such as the ones
we presented in this study, for actigraphy analysis can lead to
a paradigm shift in the study of lifestyle behaviors such as sleep
and physical activity, just as electrocardiography became crucial
for cardiology and clinical research.

Our research showed that deep learning performed better than
classical methods in terms of learning useful patterns from raw
accelerometer data for the task of sleep quality prediction. Since
deep learning models compute abstract features from raw input
signals while optimizing on the actual sleep quality, this process
yields a more robust solution. Furthermore, the good results of
deep learning showed that raw accelerometer data had more
“signal” regarding sleep quality, which traditional models such
as logistic regression are not able to capture right now. More
research needs to be done to understand why deep learning
performs better, which eventually can help in identifying new
factors influencing the quality of sleep.

Impact in eHealth
Our study provided an early example of how advanced deep
learning methods could be used to infer new insights from raw
actigraphy data. Our focus on predicting and forecasting can

help design new eHealth applications where predictions are
made to personalize coaching for patients or to facilitate decision
making of professionals.

There is an increased interest in sleep in the health domain. This
is consequently being reflected in an increase use of eHealth
for sleep [50-54] and also in the use of social media for sharing
sleep logs [53]. The expansion of eHealth into sleep is not
limited to sleep disorders, but also to improve sleep for people
living with chronic conditions such as cancer [53]. These
developments are closely related to the concept of Quantified
Self for health [55,56]. Furthermore, we can assume that
predicting sleep quality based on physical activity data acquired
by accelerometer data (both from actigraphy or activity trackers)
can be used to provide personalized feedback, such as
momentary ecological interventions based on mobile technology
[57].

In our study, we attempted to predict a parameter regarding the
quality of sleep solely relying on the physical activity during
the awake time. To our knowledge, this was not done earlier.
The advantage of this approach is that eventually the same
approach can be used to predict sleep quality with data from
smart watches and other wearable devices that are not
necessarily used during sleep. Therefore, our models can
eventually be used within eHealth applications that do not
require wearing a sensor during sleep. This is of special interest
for the development of smart watch health apps [33], as they
might require frequent battery charging.

Our research has many limitations as explained in the next
subsection. However, this is the first study, to our knowledge,
that focused on the prediction of sleep quality from physical
activity accelerometer data during awake periods. Our
methodology and results can be used as the baseline for further
studies looking into predicting sleep quality from mobile and
wearable devices. This is a source of major concern, since many
sleep apps in the making predict with unclear methodology and
performance [50-52]. Although more studies are highlighting
the increasing reliability of consumer sleep wearables [31], we
do not know how they calculate or predict sleep quality
parameters. To maximize the potential of the wearable mass
adoption for sleep health, we need research on not only the
reliability of consumer-grade devices but also their data
processing and modeling techniques.

Limitations
There were some limitations in our study regarding the
generalization of our results. Sleep behavior can be affected by
cultural aspects and also change with age. Our study sample
drew sleep data from adolescents, aged 10-17 years, living in
Qatar. Future research will need to evaluate whether applications
of deep learning for sleep research using actigraphy will yield
similar results in different populations (eg, adults and people
with chronic conditions).

In our study, the prediction was simplified to “good” and “poor”
sleep quality with regards to sleep efficiency. This may be an
oversimplification of complex sleep problems. To provide more
precise predictions (eg, quantitative value of sleep quality),
these techniques will need to be validated. A prediction, such
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as the one presented in this study, might be useful for the
detection of people with unhealthy sleep patterns, but not to
identify the causes of poor sleep efficiency.

There is also a limitation in the interpretation of deep learning.
Deep learning models are “black boxes” and do not provide
explanation of their sleep efficiency prediction. Other techniques
such as logistic regression can provide insights on which features
contribute to the prediction. However, this study showed that
the performance of such models was much lower than that of
deep learning. New techniques in deep learning are being
researched to facilitate the interpretation of such models.

In our study, the models used the data from the individual’s
awake time to predict of sleep quality. The prediction was made
at the last moment before sleep using the full awake time
activity. If these models were to be used to provide personalized
feedback to individuals with sleep problems, they will need to

be tested with fragments of the awake time, giving an individual
time to alter their behavior. Since our data was fragmented into
sleep periods and awake times specific to an individual, the
models would be able to handle varying durations of awake
time.

Conclusions
Our study showed the feasibility of deep learning in predicting
sleep efficiency using wearable data from awake periods. This
is of paramount importance because deep learning eliminated
the need for data preprocessing and simplified the overall
workflow in sleep data research. The feasibility of our approach
can lead to new applications in sleep science and also to the
development of more complex eHealth sleep applications for
both professionals and patients. These models can also be
integrated in the broader context of quantified self [55,56].
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